Все о печах и каминах - Информационный портал

Характеристика геоинформационных технологий экологического назначения. Фундаментальные исследования

сажи, тяжелых металлов - для выяснения закономерности перераспределения загрязнителей на территории открытой и облесенной, так как снежный покров позволяет выявить лесомелиоративный эффект в пространственном перераспределении загрязнителей на различном расстоянии от источника загрязнения .

Результаты и их обсуждение. Полученные результаты свидетельствуют об аккумуляции загрязняющих веществ снежным покровом, объем которых уменьшается пропорционально расстоянию от источника воздействия. Таким обрахом, подтверждается снегозащитная роль прижелезнодорож-ных полос (на расстоянии 60-100 м от источника воздействия) - содержание загрязняющих веществ на облесенном участке в среднем ниже на 60%, чем на аналогичной открытой территории.

Заключение, выводы.

Исходя из экспериментальных данных, можно сделать следующие выводы. В процессе работы была апробирована традиционная методика отбора снежного покрова на содержание в нем поллю-тантов. Кроме того, подобная методика позволяет выявить эффективность выполнения снегозащитной функции системой защитных лесных насаждений вдоль линейных объектов. Следует отметить положительную тенденцию по уменьшению содержания загрязняющих веществ в снежном покрове в прижелезнодорожной полосе по сравнению с открытой территорией.

Литература:

1. Аэротехногенный мониторинг состояния городской среды по загрязнению снежного покрова (на примере города Воронежа) / Т. И. Прожорина [и др.] // Вестник Волгоградского государственного университета. Серия 11. Естественные науки. - 2014. - № 3(9). - С. 28-34.

2. Безуглая Э. Ю. Мониторинг состояния загрязнения атмосферы в городах. - Л.: Гидрометеоиздат, 1986. - 284 с.

3. Василенко В. Н., Назаров И. М. Мониторинг загрязнения снежного покрова. - Л.: Гидрометеоиздат, 1985. - 312 с.

4. Инструкция по снегоборьбе на железных дорогах Российской Федерации. - М.: Транспорт, 2000. - 95 с.

5. Матвеева А. А. Снежный покров как индикатор

загрязнения окружающей среды // Эколого-экономи-ческие оценки регионального развития: материалы Круглого стола, г. Волгоград, 30 марта 2009 г., ГОУ ВПО «ВолГУ» / Отв. ред С. Н. Кириллов. - Волгоград: ВолГУ

2009. - С. 59-63.

6. Матвеева А. А. Состояние и экологическая роль защитных лесных насаждений вдоль железных дорог: ав-тореф. дисс. ... к. с.-х.. н. - Волгоград, 2009. - 22 с.

7. Матякин Г. И., Пряхин В. Д., Прохорова З. А. Снегозащитные лесные полосы. - М.: НТИ Мин-ва автомобильного транспорта и шоссейных дорог РСФСР, 1962. - 79 с.

8. Оценка загрязнения атмосферного воздуха пылью по данным снегосъемки на основе реконструкции полей выпадений / А. Ф. Щербатов [и др.] // Анализ риска здоровью. - 2014. - № 2. - С. 42-47.

9. Прокачева В. Г., Усачев В. Ф. Снежный покров как индикатор кумулятивного загрязнения в сфере влияния городов и дорог // Метеорология и гидрология. - 2013. - № 3. - С. 94-106.

10. Путевое хозяйство: учебник для вузов ж.-д. транспорта / Под ред. И. Б. Лехно. - М.: Транспорт, 1990. - 472 с.

11. Сажин А. Н., Кулик К. Н., Васильев Ю. И. Погода и климат Волгоградской области. - Волгоград: ВНИАЛМИ,

12. Сергеева А. Г., Куимова Н. Г. Снежный покров как индикатор состояния атмосферного воздуха в системе санитарно-экологического мониторинга // Бюллетень физиологии и патологии дыхания. - 2011. - Вып. 40. - С. 100-104.

13. Снег: Справочник / Под ред. Д. М. Грея и Д. Х. Мейла. - Л.: Гидрометеоиздат, 1986. - 751 с.

14. Шумилова М. А., Жиделева Т Г. Особенности загрязнения снежного покрова вблизи крупных автомагистралей г. Ижевска // Вестник Удмуртского университета. - 2010. -Вып. 2. - С. 90-97.

ENVIRONMENTAL ROLE OF WINDBREAKS PLANTED

ALONG THE RAILWAYS FOR REDUCTION OF SNOW COVER POLLUTION

Matveyeva A. A., PhD Sci. Agr. [email protected], [email protected] Volgograd State University, Volgograd, Russia

The paper considers the sorption properties of snow cover which define the level of anthropogenic impact of linear facilities, including railway transport; shows the analysis of the territory of the Volgograd branch of the railroad - both sheltered and unsheltered.

Keywords: protective forestations, railway, region, snow cover, pollution

УДК 528:634.958

ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОЛОГИИ И ПРИРОДОПОЛЬЗОВАНИИ

К. Б. Мушаева, к. с.-х. н., [email protected] - Калмыцкая НИАГЛОС -филиал ФНЦ агроэкологии РАН, Элиста, Россия

Рассмотрены вопросы применения геоинфор- при создании картографических материалов.

мационных систем (ГИС). Составлена электрон- Ключевые слова: геоинформационные систе-

ная почвенная карта Калмыкии. Показаны пре- мы, экология, природопользование, электрон-

имущества применения программы Quantum GIS ные карты.

В настоящее время практически ни одна задача природопользования не решается без использования той или иной геоинформационной технологии. В наше время свободное программное обеспечение стало символом инноваций и прогресса . Геоинформационные методы и системы находят широкое применение в природопользовании и охране окружающей среды, так как позволяют:

создавать электронные карты, отражающие состояние окружающей среды территории;

проводить гео- и имитационное моделирование явлений, происходящих в окружающей среде, с учетом уровней антропогенной нагрузки и эффективности принимаемых управленческих решений;

накапливать, хранить и запрашивать информацию по трендам параметров окружающей среды за

промежуток времени;

оценивать экологические риски территорий и объектов (предприятий) для управления безопасностью при техногенных воздействиях на окружающую среду.

Для того чтобы использовать ГИС в какой-то определенной тематической области, необходимо, прежде всего, сформулировать задачу, которая должна решаться средствами ГИС.

Каждый проект является уникальным, поэтому при его реализации учитываются доступные технические средства и структура субъекта, в котором ГИС-проект реализуется.

Возможности ГИС для интеграции информации, полученной из различных источников, в пространственном контексте делают их пригодными в каче-

стве средств поддержки процедур принятия решений, построения моделей для принятия решения, например в природопользовании, которые должны строиться с учетом множества факторов.

Такие модели используют географически привязанную информацию, измеренную по множеству параметров, для определения пространственных взаимодействий, являющихся оптимальными или предпочтительными.

Значительная часть информации в сфере природопользования имеет географическую привязку и поэтому является пространственно-координированной. Любой специалист в этой области вынужден применять в своей работе ГИС как для визуализации данных, т. е. создания электронных карт, так и для выполнения различных видов пространственного анализа данных, хранения первичной информации, проведения экспертиз и подготовки принятия управленческих решений.

ГИС могут включать информационно-измерительные блоки. В этом случае возможна визуализация результатов постоянного мониторинга окружающей среды в режиме реального времени.

Также ГИС могут служить источником данных для компьютерных моделей распространения загрязняющих веществ в окружающей среде и моделей функционирования экологических систем.

Результаты компьютерного моделирования также могут представляться на электронных ГИС-картах. Одно из преимуществ электронных карт по сравнению с бумажными заключается в широчайших возможностях создания новых пространственных объектов на основе уже существующих с наследованием семантики «базовых» объектов.

При выполнении исследований часто бывает необходимо поместить на карте точки отбора проб, измерений и тому подобных мест выполнения полевых исследований по их координатам. Также часто для визуализации или анализа экологической информации требуется выполнить связывание или соединение реляционных таблиц.

Типовой задачей геоэкологических исследований является пространственная интерполяция результатов полевых исследований и анализ полученных пространственных полей.

Для лучшего представления результатов исследований бывает полезным применение диаграмм, а их создание также возможно в среде ГИС.

Очень часто при исследованиях в области геоэкологии и природопользования возникает необходимость географической привязки растрового слоя - отсканированного изображения бумажной карты или спутникового снимка.

Экологические ГИС представляют собой сложные информационные системы, включающие:

операционную систему;

интерфейс пользователя;

системы ведения баз данных и отображения экологической информации.

Свободное использование, изменение и распространение программного обеспечения и его исходных кодов гарантировано поддержкой свободного обмена идеями между пользователями и разработчиками. Сейчас можно выделить следующие популярные открытые ГИС: GRASS GIS; ILWIS; MapWindow GIS; SAGA; Quantum GIS; gvSIG и др.

Среди перечисленных программ для первоначальной оцифровки карт и их создания используют Quantum GIS (QGIS) - свободную кроссплатформен-

ную геоинформационную систему.

Программа QGIS доступна для большинства современных платформ (Windows, Mac OS X, Linux) и совмещает поддержку векторных и растровых данных, а также способна работать с данными, предоставляемыми различными картографическими веб-серверами и многими распространенными пространственными базами данных . QGIS имеет одно из наиболее развитых интернет-сообществ в среде открытых ГИС, при этом количество разработчиков постоянно увеличивается, чему способствуют наличие хорошей документации по процессу разработки и удобная архитектура. Программа QGIS имеет большой набор функций для создания ЦМР и для формирования карт.

Базой для создания карты послужили архив с цифровой почвенной картой России масштаба 1:2 500 000 в формате shape-файла и легенда почвенной карты в формате электронной таблицы Excel, которая содержит индекс и название почвы.

Добавляем слой почвенной карты в QGIS. Слой - Добавить слой - Добавить векторный слой или кнопка на панели инструментов слева. Указываем тип источника Файл, кодировка UTF-8. Нажмите кнопку Обзор и выберите файл soil_map_ M2_5-1.0.shp.

В диалоговом окне открываем OGR-совмести-мый векторный слой справа напротив строки Имя файла будет стоять фильтр ESRI shape-файлы (*.shp *.SHP) (рисунок 1).

Добавленный слой будет отображаться в градусах широты и долготы, географической системы координат WGS-84. Добавляем в проект файл boundary-polygon.shp из Open Street Map. Данный файл мы создавали ранее для картографирования статистических данных. Увеличиваем охват изображения до его границ. Необходимо обратить внимание, что границы слоев будут немного не совпадать в пространстве. Это объясняется разным масштабом исходных данных. Для исправления выполняем аналитическую операцию «Обрезать» -Меню Вектор - Геообработка - Обрезать.

Указываем исходный слой - то, что будет обреза-

0. t В-О Га--Чт ¡411 ■■ Т Н ■"» " -:■

11 Б и-Р SB-Ii И

Недавние проекты

© . í , ä,„......

Рисунок 1 - Диалоговое окно открытия OGR-совмести-мого векторного слоя

но - файл soil_map_M2_5-1.0.shp.

В качестве слоя обрезки - то, что будет использовано в качестве отрезающей формы - указываем файл boundary-polygon.shp.

Результат обрезки называем Почвы Республики Калмыкии и сохраняем в ту же папку, где находится скачанная почвенная карта. При этом указываем тип файлов SHP файлы (*^р). Кодировка - ШГ-8 (рисунок 2).

Параметры Лог

boundary-polygon

parte of the features in the input layer that fells

features will be modified by the dipoing operation.

Мой компьютер Ü soi_map_MZ_5-L0

Рисунок 2 - Окно сохранения полученного файла

Запускаем инструмент (рисунок 3). Добавляем в проект сохраненный на диске в результате обрезки файл Почвы Республики Калмы-кия^р, не забывая при этом указать кодировку ШГ-8.

Сменяем систему координат проекта с географической WGS-84 на прямоугольную систему координат WGS 84 / UTM 44N (Universal Transverse Mercator - универсальная поперечная Меркатора). В результате карта примет более привычный вид.

в пакетном режиме.

Исходный слом |soil_map_M2_5-l.Q [

Слой обрезки

I boundary-polygon

Результат обрезки

| P:/Soil/soil_map_M2._5-i.O/rio4Bbi Алтайского края,5Ьр 0 Открыть выходной файл после исполнения алгоритма

This algorithm dips a vector layer using the polygons of an additional polygons layer Only the parts of the features in the input layer that falls within the polygons of the dipping layer will be added to the resulting layer

The attributes of the features are not modified, although properties such as area or length of the features will be (modified by the dipoing operation. If such properties are stored as attributes, those attributes will have to be manually updated,

Рисунок 3 - Окно запуска инструмента обрезки файла

Добавим EXCEL-файл легенды почвенной карты в проект. Слой - Добавить слой -Добавить векторный

слой. Тип источника Файл. Кодировка ШГ-8. Обзор - выбрать файл soil_map_M2_5Jegend-L0.xls (рисунок 4).

Добавить векторный слой

Тип источника

® Файл О Каталог Кодировка System

О База данных

~ «Н - Ча И

Набор данных

]|| Обзор I

Открыть OGR-совместимый векторный слой

ifF1 Admin (k504-n02 В видео ¿Ц Документы Ц^. Загрузки

Изображения jb Музыка Lh Рабочий стол

U SOi map M2 5-1.0 28.0B.2017 18:40 Пагтка с файлами

IIsoi _m a p_M2_5_l eg en d -1.0.xts 28.03.2017 17:59 Лист Microsoft Ex... 82 КБ

LID soi _map_M2_5-10.zip 28.03,201717:58 Сжатая ZIP-папка 54192 КБ

I диск SKRIPKO (GO stud t\\10,0.28,2с.

Имя файла:

soil_map_M2_5_legend-1.0.xls V I Все файлы Г) Г.") ^ I

Рисунок 4 - Открытие EXCEL-файл легенды почвенной карты

Почвы Калмыкии ИТОГ

Бурые солонцеватые и солонцы (автоморфные) I I Бурые солонцеватые и солончаковатые

I М Вода "-"

I I Каштановые ^^

I I Каштановые солонцеватые и солончаковатые

I -I Каштановые солонцеватые и солончаковатые и солонцы (автоморфные)"-"

ОВ Лугово-болотные солончаковатые и солонцеватые ^^

I И Лугово-каштановые

I I Лугово-каштановые солонцеватые и солончаковатые I I Луговые солонцеватые и солончаковатые I I Маршевые засоленные и солонцеватые |Л Пески

I I Пойменные засоленные Ц Пойменные луговые

С ветло- каштановые

Светло-каштановые солонцеватые и солончаковатые

Светло-каштановые солонцеватые и солончаковатые и солонцы (автоморфные) Солоди

Солонцы (автоморфные)

Солонцы (автоморфные) и бурые солонцеватые

Солонцы (автоморфные) и каштановые солонцеватые и солончаковатые

Солонцы (автоморфные) и светло-каштановые солонцеватые и солончаковатые

Солонцы луговатые (полугидроморфные)

Солонцы луговые (гидроморфные)

Солончаки луговые

Солончаки типичные

Солончаки типичные и солонцы луговые (гидроморфные) Темно-каштановые

Темно-каштановые солонцеватые и солончаковатые

Черноземы южные и обыкновенные мицепярно-карбонатные (черноземы глубокие карбонатные)

Рисунок 5 - Почвенная карта Калмыкии

Итогом такой работы (на примере цифровой почвенной карты России масштаба 1:2 500 О00) у нас стала почвенная карта Калмыкии (рисунок 5).

Использование информационного подхода, базирующегося на информационных технологиях (геоинформационных и экспертных системах), позволяет не только количественно описать процессы, происходящие в сложных эко- и геосистемах, но и, смоделировав механизмы этих процессов, научно обосновать методы оценки состояния различных компонентов окружающей природной среды.

Программа Quantum GIS обладает хорошим компоновщиком карт . Компоновщик карты обеспечивает широкие возможности для подготовки макета карты и его печати. Он позволяет добавлять следующие элементы: карта QGIS, легенда, масштабная линейка, изображения, фигуры, стрелки и текстовые блоки. При создании макета доступно изменение размеров, группировка, выравнивание и изменение положения каждого элемента, а также настройка их свойств. Готовый макет можно распечатать или экспортировать в растровое изображение, форматы Postscript, PDF или SVG. Таким

образом, можно сделать следующий вывод, что использование программы Quantum GIS облегчает процесс создания картографических материалов для тех или иных целей. Преимущество данной программы и были описаны в данной работе.

Литература:

1. Акашева А.А. Пространственный анализ данных в исторических науках. Применение геоинформационных технологий. Учебно-методическое пособие / А.А. Акашева. - Нижний Новгород: Нижегородский госуниверситет, 2011. - 79 с.

2. Электронный учебник Quantum GIS http://wiki.gis-lab.info/w/%D0%A3%D1%87%D0%B5%D0%B1%D0%BD 0/oD0°/oB80/oD0°/oBA_Quantum_GIS

3. Quantum GIS. Руководство пользователя.

GEOGRAPHIC INFORMATION SYSTEMS IN ECOLOGY AND

ENVIRONMENTAL MANAGEMENT Mushayeva K.B., PhD Sci. Agr., [email protected] - Kalmyk NIAGLOS - Branch of FSC of Agroecology RAS, Elista, Russia

The article considers the use of geographic information systems (GIS). The soil e-map of the Republic of Kalmykia has been developed. The advantages of application of the program Quantum GIS for creating maps are revealed.

Key words: geographic information systems, ecology, nature management, e-maps.

ПРОБЛЕМЫ МЕТОДИКИ ВЫСШЕГО ПЕДАГОГИЧЕСКОГО ОБРАЗОВАНИЯ

В. Г. Капустин

ГИС-ТЕХНОЛОГИИ КАК ИННОВАЦИОННОЕ СРЕДСТВО РАЗВИТИЯ ГЕОГРАФИЧЕСКОГО ОБРАЗОВАНИЯ В РОССИИ

КЛЮЧЕВЫЕ СЛОВА: геоинформатика; географическая информационная система (ГИС); ГИС-технологии; цифровые карты; информационный геокомплекс; школьная географическая информационная система.

АННОТАЦИЯ. Анализируется современное состояние проблемы использования ГИС-технологий в процессе подготовки учителя географии и в изучении географии в средней школе.

GIS-TECHNOLOGIES AS INNOVATIVE MEANS OF DEVELOPMENT OF GEOGRAPHICAL EDUCATION IN RUSSIA

KEY WORDS: Geoinformatics; Geographic Information System (GIS); GIStechnologies; digital maps; information geocomplex; schools geographic information system.

ABSTRACT. The Analysis modern with-standings and problems of the use GIStechnology in process of preparing the teacher to geographies and in study of the geographies in secondary school.

Современную общеобразовательную и высшую школу характеризует активный переход к использованию новых информационных технологий. В учебном процессе реализуются программы информатизации, разработаны электронные учебники, развиваются дистанционные технологии получения образования, создана Российская Единая Коллекция цифровых образовательных ресурсов 3. Учебно-

3 Единая Коллекция была создана в ходе проекта «Информатизация системы образования», реализуемого Национальным фондом подготовки кадров по поручению Министерства образования и науки Российской Федерации. В настоящее время пополнение и развитие Коллекции осуществляется в рамках Федеральной целевой программы развития образования.

методические материалы Коллекции ориентируют учителя на внедрение современных методов обучения, основанных на использовании информационно-коммуникационных технологий. В ее состав вошли наборы цифровых ресурсов по всем школьным дисциплинам, разнообразные тематические и предметные коллекции, а также другие учебные, культурно-просветительские и познавательные материалы. Коллекция содержит, соответственно, различные материалы по географии, в том числе представлена школьная геоинформа-ционная система (ШГИС). Кроме того, в Коллекции представлены и инновационные учебно-методические разработки, мотивирующие учителя к использованию образовательных технологий, принципиально изменяющих образовательную среду, делающих ее адекватной требованиям информа-

ционного общества. Подключение всех школ России к Интернету в рамках приоритетного национального проекта «Образование» обеспечило доступность ресурсов коллекции для всех образовательных учреждений.

Важно подчеркнуть, что новые технологии открывают новые возможности по формированию личностного потенциала и обеспечению успешности выпускника высшего учебного заведения или школы.

ФГОС второго поколения - и в этом его принципиальное отличие от предшествующих разработок - во главу угла ставит личностный результат образования . Современные образовательные технологии позволяют максимально решать задачи развивающего обучения, индивидуализации образования.

Однако активному внедрению информационных технологий в образование мешают несколько сложных проблем. Действующие образовательные стандарты высшего педагогического образования не в полной мере обеспечивают подготовку специалистов для работы с электронными образовательными ресурсами. Система переподготовки и повышения квалификации учителей (и преподавателей педагогических вузов) также недостаточно учитывает жизненную необходимость освоения информационных технологий работающими учителями. Пока что в освоении таких технологий преобладают процессы самообразования.

Качество многих электронных ресурсов оставляют желать лучшего. Материалы Единой Коллекции по географии разнообразны как по содержанию, так и по уровню выполнения. Однако, часть материалов, на наш взгляд, малопригодна или непригодна для использования в школе. Видимо, период накопления таких разнородных и разноуровневых материалов неизбежен и в дальнейшем, в результате целенаправленной работы ведущих методических центров, будет произведен отбор материалов, действительно отвечающих современным требованиям информационно-образовательной среды.

Изложенное свидетельствует о существовании серьезного противоречия, обусловленного с одной стороны интенсивно развивающимися процессами информатизации образовательной практики, с другой стороны - стихийным, слабоуправляемым характером этих процессов в системе отече-

ственного географического образования как на уровне общеобразовательной, так и высшей школы. Обсудим некоторые аспекты указанной проблемы. Первый из них связан с анализом способов представления современной географической информации.

Географическая информация. Значительная доля информации, с которой имеет дело человек, является пространственной, или географической.

Пространственная информация передается в основном с помощью мелкомасштабных общегеографических и тематических карт и атласов, топографических карт, аэрокосмических снимков, планов и схем, адресов размещения объектов, маршрутов движения и других сведений.

Однако крылатая фраза «Карта - альфа и омега географии» наполняется в современном обществе новым содержанием. Кроме традиционной бумажной карты в жизнь человека врывается электронная карта, несущая разнообразную географическую пространственную информацию.

Географическая карта становится динамичной, интерактивной. Карту можно совместить с космическим снимком - с изображением всей Земли или отдельного села, как они видны из космоса. Космический снимок отражает реальное положение дел в определенный момент времени в данной местности.

Сегодня в Интернете стали привычными карты и космические снимки облачности, циклонов, ландшафтов и т. д. В Российской Федерации в рамках Федеральной целевой программы «Электронная Россия» разрабатывается Концепция формирования Российской инфраструктуры пространственных данных как элемента общегосударственных информационных ресурсов.

По существу, в современный период человек изучает, анализирует, просматривает результаты обработки пространственных данных в географических информационных системах.

Геоинформационные системы (ГИС) и геоинформационные технологии (ГИС-технологии) получили сегодня в мире самое широкое применение. ГИС активно используются для решения научных и практических задач на локальном, региональном, федеральном и глобальном уровнях. ГИС-технологии применяют для комплексного изучения природно-экономического потен-

циала крупных регионов, инвентаризации природных ресурсов, проектирования транспортных магистралей, обеспечения безопасности человека и т. д.

Современное состояние общества, значительное усложнение его инфраструктуры требуют от новых поколений овладения новыми средствами и методами обработки и анализа пространственной информации, методами оперативного решения задач управления, оценки и контроля изменяющихся процессов. Геоинформационные технологии предоставляют такие новые методы и средства обработки информации, которые обеспечивают высокую наглядность отображения разнородной информации и доступный инструментарий для анализа реальности. ГИС обладают огромным потенциалом для анализа информации с целью принятия управленческих решений в социально-экономической сфере .

Но процессы, свойственные всему обществу, определяют необходимость внедрения инновационных геоинформационных технологий в процесс обучения на уровне не только высшего профессионального образования, но и на уровне общеобразовательной школы. Для реализации огромного потенциала ГИС необходимо проводить широкую подготовку пользователей географическими информационными системами. Среди технологий, которые должны занять центральное место в подготовке учителя географии, особо выделим технологии ГИС (технологии географических информационных систем, ГИС-технологии).

Сущность ГИС технологий и их образовательные возможности. Кратко ГИС определяются как информационные системы, обеспечивающие сбор, хранение, обработку, отображение и распространение данных, а также получение на их основе новой информации и знаний о пространственно-координированных явлениях. Необходимо подчеркнуть их способность хранить и обрабатывать пространственные, или географические, данные, что и отличает ГИС от иных информационных систем. Важность ГИС-технологий для географического образования определяется их функциональными возможностями, которые полностью соответствуют традиционным методам географического изучения окружающего пространства, более того, заметно

расширяют их и выводят на совершенно иной, качественно новый уровень.

Инструментальные возможности ГИС включают простейшие картометрические операции, в том числе вычисление расстояний между объектами, площадей объектов, абсолютных высот; выполнение морфометрических операций; операции оверлея с выявлением взаимосвязей между географическими объектами и процессами; пространственный анализ; пространственное моделирование. ГИС-технологии обеспечивают визуализацию исходных, производных или итоговых данных и результатов обработки в виде тематических географических карт.

ГИС-технологии предоставляют пользователям возможности создания, отображения и анализа растровых данных. Растровые данные, или грид-данные, особенно удобны для отображения географических явлений непрерывных в пространстве, таких как рельеф, осадки, температура, плотность населения и других данных, которые можно представить в виде статистических поверхностей. Грид-данные используются также для анализа различного рода потоков по поверхности, например, поверхностного стока, а также изменений географических явлений во времени. ГИС поддерживают функции пространственного анализа: анализ близости, оверлейный анализ и пространственные операции. Становятся доступными для географов многие сложные функции трехмерного и перспективного отображения, моделирования и анализа поверхностей. В частности, ГИС включают возможности создания и работы с триангуляционными нерегулярными сетями (TIN). TIN - это специфическая векторная топологическая модель данных, наиболее подходящая для отображения и моделирования поверхностей, создания 3-D моделей рельефа.

ГИС-технологии обеспечивают работу с данными дистанционного зондирования, которые сегодня являются одним из главных источников пополнения новой информацией пространственных баз данных в геоинформационных системах и в географии в целом.

Сказанное выше подчеркивает высокий образовательный потенциал ГИС технологий. Создание методических условий для его реализации в образовательном процессе

позволяет говорить о геоинформационном образовании.

Высшее геоинформационное образования. Во всем мире быстро прогрессирует геоинформатика - новая отрасль науки, техники и производства. Геоинформа-ционные (ГИС) технологии завоевывают все большую популярность и официальное признание в нашей стране. За последние 10-15 лет в России созданы крупные гео-информационные научно производственные центры (в том числе «Уралгеоинформ» в Екатеринбурге). В ряде университетов открыты кафедры геоинформатики, ГИС, геоинформационного картографирования и т. п. В учебные профессионально-образовательные программы подготовки специалистов в университетах России введен курс «Геоинформатика» (в вузах Свердловской области - в Уральском горно-геологическом университете, Уральском лесотехническом университете, Уральском государственном университете и некоторых других). Издаются монографии, научные журналы, проведены сотни научных съездов и конференций. Разрабатываются отечественные учебники и учебные пособия, учебные ГИС. Появились специалисты, получившие высшее образование в области создания и использования ГИС. В Роскарто-графии геоинформатика - одно из основных направлений деятельности. Геоинформатика входит в перечень специальностей ВАК с правом присуждения ученых степеней по географическим, геологическим, техническим и математическим наукам.

Однако среди специальностей высшего профессионального образования мы не найдем геоинформатику. Она все еще остается частью «прикладной информатики». Но геоинформатика сегодня - не только «прикладная наука в географии», но и в геологии, геодезии, геофизике, океанологии, планетологии - словом, во всех науках о Земле и связанных с ними социально экономических отраслях знания (экономической географии, демографии, этнографии, археологии и многих др.). Геоинформатика - базовая наука для всех наук о Земле, их общий язык и метод, стоящий в одном ряду с математикой, физикой, информатикой и кибернетикой .

Отсутствие специальности «геоинформатика» приводит к целому ряду проблем в области геоинформационного образования.

Одна из них - кадровая: квалифицированных кадров, подготовленных для работы с геоинформационными системами в нашей стране, явно недостаточно. Этот тезис фактически был сформулирован около 10 лет назад . Однако он остается актуальным и в настоящее время. По-прежнему остается проблемным техническое и программное обеспечение в силу их дороговизны. Как и раньше не хватает хороших учебников по геоинформатике, учитывающих содержание подготовки по разным специальностям, в частности по географии.

Высшее педагогическое образование практически не занимается подготовкой специалистов в области геоинформатики. В Государственном образовательном стандарте по специальности «Информатика» такой дисциплины нет. В отдельных вузах введено преподавание геоинформатики в рамках блока «дисциплин по выбору» или факультативов .

Государственный образовательный стандарт высшего педагогического образования по географии ограничивается одной фразой в рамках курса «Картографии с основами топографии», которая предполагает лишь знакомство будущих учителей географии с несколькими понятиями из геоинформатики . То же относится и к учебникам по данному курсу, в содержании которых на географические информационные системы отведено 2-3 страницы текста. Такое положение дел вряд ли можно признать правильным и соответствующим современному уровню и значимости геоинформационных технологий.

ГИС-технологии в Уральском государственном педагогическом университете. В учебные планы географов и экологов Уральского государственного педагогического университета в рамках национально-регионального компонента введен курс «Географические информационные системы» в объеме 80 часов общей трудоемкости. Основная образовательная цель курса: овладение ГИС-технологиями на уровне пользователя, что позволило бы выпускникам, специалистам использовать эти технологии как мощное инновационное средство обучения географии в общеобразовательной школе.

Для методического обеспечения процесса изучения курса «Географические информационные системы» автором разрабо-

тана серия ГИС-проектов, точнее - основа этих проектов. Среди них: ГИС «Свердловская область», ГИС «Екатеринбург», ГИС «Калиновский лесопарк», ГИС «Топографическая карта», ГИС «Студенческий городок УрГПУ» и другие. Материалы ГИС, имеющиеся на географо-биологическом факультете, позволяют внедрять эти технологии в основные дисциплины профессионально-образовательной программы по специальности «география»: Физическая

география России, Физическая география материков, Экономическая география зарубежных стран, Экономическая география России, География Свердловской области, Региональная экология и многие другие.

Приоритетным проектом в системе методического обеспечения учебного курса «Географические информационные системы» выступает ГИС «Свердловская область». Он нацелен на разностороннее изучение студентами своего региона в рамках национально-регионального компонента высшего образования.

На основе растровых изображений топографических и мелкомасштабных карт созданы основные темы (слои) ГИС: рельеф в горизонталях, реки, озера и водохранилища, дороги, растительность и другие. Производится формирование баз данных для отдельных слоев. В частности для административных районов Свердловской области в атрибутивную таблицу внесены статистические данные по населению (численность, рождаемость, смертность), по экологической ситуации (объем выбросов загрязняющих веществ в атмосферу, загрязнение поверхностных вод) и другие.

Социально-экономические аспекты характеристики региона базируются на материалах Областного комитета государственной статистики. Это данные по населению области, по состоянию окружающей среды, по экономике, на основе которых возможно составление серии тематических карт. Изучение природных особенностей региона на начальном этапе опирается на ряд тематических карт природных компонентов. Материалы дистанционного зондирования могут быть использованы для корректировки содержания отдельных тем и для разработки новых материалов. Разработка этого ГИС-проекта позволило насытить картографическими материалами учебное пособие по курсу «География Свердловской области».

ГИС «Заповедник Денежкин Камень» - локальный проект, содержащий разнообразные материалы и базы данных по заповеднику. В рамках проекта возможен детальный пространственный анализ рельефа территории, который включает преобразования слоя с горизонталями в растровый формат и в grid-темы, анализ grid-тем, анализ растра, построение карт рельефа методом отмывки, построение карт углов наклона, экспозиции склонов, построение топографической триангуляционной поверхности (TIN-слоя), построение поперечных профилей, построение 3-D моделей.

Данные растительности содержат подробные характеристики каждого выдела по составу, возрасту, полноте, бонитету древостоя, характеру наземного покрова, т. е. подробные таксационные материалы. Это позволяет получить подробную характеристику растительности всего заповедника и отдельных его частей методами ArcView GIS. В рамках проекта возможен анализ данных фенологических исследований (построение карты мощности снежного покрова, карты сроков наступления основных фенологических явлений и другие).

Проект «Топографическая карта». Проект содержит изображения ряда реальных топографических карт масштаба 1: 100000 на территорию Свердловской области, а также учебную карту масштаба 1: 50 000 «У-34-37-В Снов». Карты имеют привязку в системе реальных прямоугольных координат, которая выполнена с помощью программы Rectify. Соответственно разработанные на основе карт-подложек файлы-источники данных (темы ArcView) хранятся спроектированными (в проекции Гаусса-Крюгера).

Локальные проекты «Город Екатеринбург», «Кытлымские среднегорья», «Калиновский лесопарк», «Университет», «Моя школа» имеют учебное и справочное значение. Главное их отличие от крупных региональных проектов заключается в возможности применения в этих проектах, помимо основных возможностей программы Arc-View GIS, методов пространственного анализа, построения топографических поверхностей, профилирования и 3-х мерного моделирования.

ГИС «Университет» представляет проект, который может быть по аналогии реализован в школах (ГИС «Родная школа»,

ГИС «Мой микрорайон») и вызовет, несомненно, большой интерес у школьников. В рамках такого проекта выполняется серия карт (планов) участка, для которых можно сформировать базы данных по всем объектам, расположенным на таком участке: различные строения, сооружения, растительность, тропинки и т. д. В дальнейшем на основе наблюдений за объектами могут быть получены и внесены в базы данные о загрязнении атмосферного воздуха, данные

о характере растительности, о почвенном покрове и т. д. Трехмерные модели школы и прилегающего микрорайона с показом отдельных объектов привнесут в такие проекты элементы новизны и необычности, вызовут особый интерес у школьников. Все это предоставляет уникальные возможности для организации самостоятельной работы школьников поискового, творческого характера, основанной на ГИС технологиях.

ГИС технологии в образовательной школе. Государственный стандарт общего среднего образования по географии требует, чтобы изучение данного предмета в школе было направлено на овладение умениями ориентироваться на местности; использование одного из «языков» международного общения - географической карты, статистических материалов, современных геоинформационных технологий для поиска, интерпретации и демонстрации различных географических данных.

В настоящее время в ряде стран мира (в частности, в США, Великобритании, Австрии и др.) цифровые образовательные ресурсы и географические информационные системы широко применяются в школьном географическом образовании. О необходимости внедрения геоинформационных технологий в систему общего образования России говорили еще 10 лет назад . Однако проблема использования и проектирования геоинформационных систем в средней школе на практическом уровне до настоящего времени не решена. Применение ГИС происходит пока только в рамках отдельных экспериментов. Проводятся редкие научные исследования с целью обоснования и практической реализации методической системы обучения созданию и использованию учебных геоинформационных систем в различных курсах средней школы .

Особого внимания заслуживает Школьная ГИС «Живая география» (Информационный источник сложной структуры), разработанная ЗАО КБ «Панорама» и ИТЦ «СканЭкс» . Имеется опыт применения ГИС «Живая География» в школах Москвы и других регионов России. Программная оболочка (инструмент) для работы с геопространственными данными, комплект цифровых карт мира и России а также коллекция космических снимков доступны для пользователей на сайте Единой коллекции цифровых образовательных ресурсов .

Школьная ГИС повышает эффективность учебного процесса за счет использования ГИС технологий в решении разнообразных традиционных и новых географических задач, решаемых на уроках географии. Среди таких задач поиск и анализ географической информации, имеющейся на карте; определение по карте расстояний, направлений, высот точек; географических координат, местоположения, протяженности и площади географических объектов; описание свойств географических объектов. Сопоставление и сопряженный анализ карт разного содержания на одну и ту же территорию целью выявления взаимосвязей, например, между климатом и рельефом, климатом и растительностью и т. п. Подобные задания сложны для выполнения при использовании традиционных карт, поскольку основаны на операциях наложения нескольких карт мысленно, порой имеющих разные масштабы. ГИС-технологии решают эту задачу быстро и помогают провести ученику такой сопряженный анализ, что развивает навыки интеллектуального труда.

Сложностью отличаются учебные задачи чтения рельефа по карте. При их решении школьникам необходимо представить территорию, изображенную на плоскости в трехмерном виде. Геоинформационные технологии оказывают существенную помощь в решении этой задачи на основе визуализации трехмерных моделей территории, что несомненно развивает пространственное воображение учащихся.

На основе ГИС-технологий школьникам становятся доступным создание собственных цифровых карт на базе имеющихся тематических слоев, редактирование цифровых контурных карт, подготовка карт к изданию (выполнение компоновки карт).

Кроме того, ГИС-технологии обеспечивают возможность постоянного обновления статистических материалов и цифровых карт силами самих школьников под руководством учителя, в отличие от традиционных «бумажных» карт. Таким образом, у современного учителя появляется возможность обучать географии, используя самые последние актуальные географические данные о природе, населении и хозяйстве и их взаимосвязях, рассматриваемых на разных уровнях организации географического пространства.

Разработка локальных проектов, расширение баз данных, привлечение новых картографических материалов, материалов дистанционного зондирования, вполне доступны для школьников и могут быть использованы в учебном и внеучебном процессе в школе.

Итак, технологии ГИС значительно усиливают деятельностный аспект обучения. Учащиеся самостоятельно добывают «новые знания», одновременно усваивая новые приемы работы, транслирующие особенности современных научных методов географического познания. Они получают начальную подготовку и опыт практической деятельности с использованием современных технологий. ГИС способствуют достижению важной цели, заложенной ФГОС второго поколения, - личностному результату образования.

Программы ГИС. Перечень современных программных продуктов ГИС достаточно разнообразен и обширен. В нем можно насчитать более двух десятков программ, относящихся к профессиональным или к настольным ГИС. Среди наиболее распространенных: ГИС MapInfo Pro, Arc/INFO, ArcView GIS, GeoMedia, WinGIS, GeoGraph/ GeoDraw, ГИС «Панорама» и некоторые другие.

Функциональные возможности этих программ, по большому счету, близки, особенно для учебных целей в рамках рассматриваемой проблемы внедрения ГИС технологий в систему географического образования. Программы ГИС имеют средства создания и редактирования цифровых векторных и растровых карт, выполнения измерений и расчетов расстояний и площадей, оверлейных операций, построения 3D-моделей, обработки растровых данных, (например, данных дистанционного зондиро-

вания, в частности цифровых космических снимков), средства тематического картографирования, подготовки карт к изданию, инструментальные средства для работы с базами данных. Вместе с тем выбор программ для использования в учебном процессе в вузе, пока опирается на субъективную оценку преподавателя. А оценка зависит во многом от политики ведущих фирм производителей программных продуктов по продвижению их на рынок.

В соответствии со стратегией ESRI (разработчик Arc/INFO и ArcView GIS), учебные заведения и библиотеки могут приобрести распространяемые этой компанией программные продукты по льготным ценам. Кроме того, ESRI и дистрибьюторы этой компании (ДАТА+) реализуют долгосрочную программу поддержки учебных заведений, направленную на развитие ГИС образования. В соответствии с этой программой учебные заведения, организующие на своей базе учебные классы и включившие ГИС-курсы в учебное расписание, могут на конкурсной основе получить необходимые программные продукты семейства ArcGIS практически бесплатно (оплачиваются только расходы за доставку, таможенную очистку и льготную стоимость обучения работе с полученными продуктами в сертифицированных учебных центрах).

В России в рамках поэтапной реализации этой стратегии DATA+ совместно с Министерством образования Российской Федерации и Государственным НИИ информационных технологий и телекоммуникаций «Информатика» оснастили ГИС- продуктами более 100 учебных классов в разных районах России и других стран ближнего зарубежья .

ЗАО КБ «Панорама» проводит аналогичную политику, реализуя программу поддержки высших учебных заведений, использующих ГИС технологии в учебном процессе. 48 вузов России, из них 11 классических университетов и 1 педагогический вуз (Воронежский ГПУ) используют ГИС «Панорама» («ГИС Карта-2008», «Панорама редактор» и другие приложения). Эти программные продукты применяют 19 вузов Украины, 3 - Белоруссии, один - Сирийской Арабской Республики.

Как было показано выше, КБ «Панорама» разработало Школьную ГИС «Живая география», которая проходит апробацию в

школах Москвы и в некоторых других регионах. К сожалению, опыт использования этой программы почти не известен широкому кругу преподавателей географических специальностей вузов и учителей географии. В журнале «География в школе» за последние 5 лет появилась всего лишь одна статья по рассматриваемой проблеме .

По нашей оценке Школьная ГИС наряду со многими положительными качествами, и прежде всего функциональными возможностями, имеет существенный недостаток, который вытекает из содержания исходный ГИС «Панорама». Цифровые географические карты мира и России, включенные в Школьную ГИС не адаптированы к задачам школьного образования.

В качестве базовой карты используются слои цифровой карты России, соответствующие по своей подробности и содержанию карте масштаба 1: 1 000 000 (для карт мира - 1: 5 000 000). Напомним, что карты атласов России и мира имеют масштабы

1: 25 000 000 и 1: 80 000 000. Такая детальность базовых карт Школьной ГИС абсолютно не нужна и более того, она мешает построению обобщенных карт различной тематики. Хотя процесс генерализации карт авторами программы предусмотрен. Школьная ГИС, на наш взгляд, также имеет и достаточно сложный интерфейс. Однако, несмотря на эти замечания, можно только приветствовать эту важную попытку донесения ГИС технологий до школьного образования. Это первый реальный шаг по внедрению новой инновационной технологии в географическое образование.

Выводы. Необходимость использования ГИС технологий в системе отечественного географического образования очевидна. Очевидно и то, что ГИС необходимо рассматривать как один из важных инновационных ресурсов дальнейшего развития системы отечественного географического образования. Однако для реализации этого потенциала требуются определенные организационные решения Министерства образования и науки Российской Федерации для оптимизации перехода от деятельности отдельных преподавателей-энтузиастов к целенаправленному внедрению ГИС техноло-

СПИСОК ЛИТЕРАТУРЫ

гий в учебный процесс вузов и школ. Необходима разумная стандартизация всей деятельности в области ГИС-образования: от подготовки учителей географии до внедрения технологий в школьное географическое образование.

Приоритетным направлением деятельности в области ГИС-образования должно стать развитие учебно-методического обеспечения, разработка структуры и содержания подготовки специалистов - учителей географии в области ГИС технологий. Разработка структуры учебно-методического обеспечения должна учитывать достижения ведущих отечественных педагогических вузов. Целесообразно, на наш взгляд, определение ведущего программного обеспечения ГИС технологий на конкурсной основе с участием географов, преподавателей педагогических вузов и учителей географии.

Наряду с подготовкой специалистов, необходимо осуществлять переподготовку и подготовку учителей географии в области ГИС-образования. Это важнейшая и более сложная задача в силу ряда причин: отсутствие или недостаток специалистов, обеспечивающих проведение курсов ПК, проблемы с приобретением программных продуктов, общий недостаточный уровень компьютерной грамотности действующих учителей географии и другие.

Именно поэтому важно определить адаптированное к школьному образованию ведущее программное обеспечение ГИС, обеспечить свободный доступ к нему (на сайте Единой коллекции цифровых ресурсов Министерства образования и науки РФ) или определить льготные условия приобретения с поставщиками. Выполнение этого условия позволит многократно активизировать процесс внедрения ГИС технологий в школьное образование.

Повышение квалификации учителей может осуществляться через Интернет, с размещением на сайте учебных материалов и методик их использования для школьного образования. Доступность материалов в сети Интернет позволит существенно расширить число подготовленных учителей географии, по сравнению с традиционным способом повышения квалификации.

1. БЕРЛЯНТ, А. М. Географические информационные системы в науках о Земле / А. М. Берлянт // Соросовский образовательный журнал. - 1999. - №5.

2. БЕРЛЯНТ, А. М. Электронное картографирование в России / А. М. Берлянт // Соросовский образовательный журнал. - 2000. - Т. 6, №1.

3. БЕРЛЯНТ, А. М. УМО по классическому университетскому образованию России. Секция картографии и геоинформатики / А. М. Берлянт // «Геопрофи», М., 2003. - №4.

4. ГИС способствует развитию школьного образования. По статье в ArcNews, зима 2001-2002 гг. - Режим доступа: http: //www.dataplus.ru/ARCREV/Number_21/ 3_Scool2. html (дата обращения: 15. 03.2008).

5. ГОСУДАРСТВЕННЫЙ образовательный стандарт высшего профессионального образования по специальности «032500 География». - М., 2005 .

6. ГОХМАН, В. Познание мира через ГИС / В. Гохман. - Режим доступа: http: //www.dataplus. ru/Industries/15Study/1_world. htm (дата обращения: 15.03.08).

7. ГУТОРОВА, Л. Е. Преподавание геоинформатики в вузе / Л. Е. Гуторова // Педагогическая информатика. - 2003. - №2.

8. ГУТОРОВА, Л. Е. Основы геоинформатики и геоинформационных технологий: электронный учебник по курсу «Основы геоинформатики и ГИТ» для студентов педагогических вузов / Л. Е. Гуторова; НТГСПА. - Нижний Тагил, 2004.

9. ЕДИНАЯ коллекция цифровых образовательных ресурсов. - Режим доступа: http: //school-collection.edu.ru/ (дата обращения: 20.02.09).

10. ЖЕЛЕЗНЯКОВ, А. В. Информационный геокомплекс, предназначенный для использования в процессе обучения географии в общеобразовательной школе и включающий программный инструмент для работы с цифровыми географическими картами, комплект цифровых географических карт и снимков, полученных с искусственных спутников Земли: руководство пользователя / А. В. Железняков, О. В. Григорьев, Д. В. Новенко [и др.]. - М., 2007.

11. КОНДАКОВ, А. М. Новые информационные технологии и стандарт второго поколения. Федеральный государственный образовательный стандарт. ФГОС Публикации /А. М. Кондаков. - Режим доступа: http: //standart.edu.ru/doc.aspx? DocId=761 (дата обращения: 08. 02. 09).

12. НОВЕНКО, Д. В. Использование геоинформационных технологий в школьном географическом образовании / Д. В. Новенко // География в школе. - 2007. - №7.

13. НОВЕНКО, Д. В. Информационный источник сложной структуры «Использование школьной ГИС (Живая География)»: метод. пособие для учителя географии / Д. В. Новенко, Н. Н. Петрова, А. В. Симонов, Е. В. Смирнова.- М., 2008.

14. НОВЕНКО, Д. В. Информационный источник сложной структуры «Использование школьной ГИС (Живая География)»: учеб.-метод. пособие для учащихся / Д. В. Новенко, Н. Н. Петрова, А. В. Симонов, Е. В. Смирнова - М., 2008.

15. ОСНОВЫ геоинформатики: в 2 кн. : учеб. пособие для студентов вузов / Е. Г. Капралов, А. В. Кошкарев, В. С. Тикунов [и др.] ; под ред. В. С. Тикунова. - М. : Изд. центр «Академия», 2004.

16. ПРОЛЕТКИН, И. В. ГИС и средняя школа. - Режим доступа: http: //old. sgu.ru/ogis/gis_otd/publ8. htm (дата обращения: 23.01.09).

17. СИМОНОВ, А. В. Геоинформационное образование в России: проблемы, направления и возможности развития / А. В. Симонов. - Режим доступа: http: //cnit.pgu.serpukhov.su/WIN/gisobrru.htm (дата обращения: 23.01.09).

18. ХАСАНШИНА, Н. З. Теория и методика использования учебных геоинформационных систем в профильной подготовке школьников: дис. ... канд. пед. наук / Н. З. Хасаншина. - Тольятти, 2004.

19. ШАЙТУРА, С. В. Концепция создания и использование единой школьной геоинформационной гиперсистемы. Интернет. Общество. Личность - ИОЛ-2000. Секция: F. Телекоммуникации и Интернет в среднем образовании / С. В. Шайтура. - Режим доступа: http: //www.ict.edu.ru/vconf/index. php?a=vconf&c=getForm&r=thesisDesc&d=light&id_sec=139&id_thesis=5408 (дата обращения: 23.01.09).

1

Огромное количество природных катастроф возникает в результате необдуманных действий человечества. Причина торфяных пожаров кроется в осушении болот Восточно-европейской равнины для добычи торфа, а наводнение на Дальнем востоке принесло мощные разрушительные последствия. Современное экономическое развитие человечества не должно допустить изменения природной сферы, уничтожения жизни. В рамках современного экологического образования очень актуальным становится использование информационных технологий, среди которых, прежде всего, следует выделить геоинформационные технологии и средства дистанционного зондирования Земли (ДЗЗ). Именно они дают возможность наглядно оценить обстановку вокруг места аварии, рассчитать зону паводкового затопления, продвижение фронта пожара, распространение химического или радиоактивного загрязнения. С их помощью можно автоматически подсчитать площади пострадавших участков, оценить объемы химических и радиоактивных осадков, выделить населенные пункты и прочие объекты, находящиеся в пределах опасной территории. Информация, получаемая от систем космической съемки, применяется при решении задач экологического мониторинга. Использование материалов космической съемки рассматривается в качестве необходимого элемента формирования и функционирования региональной ГИС «Управление рисками чрезвычайных ситуаций в Свердловской области». Становится очевидной необходимость ориентации экологического образования на максимальное использование возможностей геоинформационных технологий в решении вопросов охраны окружающей среды.

экологическое образование

геоинформационные технологии (ГИС)

средства дистанционного зондирования Земли (ДЗЗ)

принцип Ле-Шателье

1. Коберниченко В.Г., Иванов О.Ю., Зраенко С.М. Региональный мониторинг природных чрезвычайных ситуаций на основе средств дистанционного зондирования Земли // Экология и рациональное природопользование / Санкт-Петербургский государственный горный институт (технический университет). СПб, 2005. – Т. 166. – С. 110–112.

2. Коберниченко В.Г. Использование данных космических систем наблюдения для мониторинга и прогнозирования чрезвычайных ситуаций на региональном уровне // Вестник УГТУ-УПИ. На передовых рубежах науки и инженерного творчества. Екатеринбург, ГОУ ВПО УГТУ-УПИ, 2004. – № 15 (45). – С. 105–107.

3. Основные требования к построению цифровой геологической модели породного массива / М.А. Журавков, О.Л. Коновалов, А.В. Круподеров, С.С. Хвесеня // Изв. вузов. Горный журнал, 2014. – № 2. – С. 56–62.

4. РИА Новости. Природных пожаров в России в этом году стало меньше почти на 40 %. Режим доступа http://ria.ru/danger/20110912/435863836.html.

5. РИА Новости. Общий ущерб от паводка на Дальнем Востоке может превысить 30 млрд. руб. Режим доступа http://ria.ru/society/20130827/958867045.html.

6. Солнцев Л.А. Геоинформационные системы как эффективный инструмент поддержки экологических исследований. Электронное учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2012. – 54 с.

7. Хорошавин Л.Б., Медведев О.А., Беляков В.А. и др. Торф: возгорание торфа, тушение торфяников торфокомпозиты / МЧС России. М.: ФГБУ ВНИИ ГОЧС (ФЦ), 2013. – 256 с.

8. Экология: Учебник. Изд. 2-е, перераб. и доп. / В.Н. Большаков, В.В. Качак, В.Г. Коберниченко и др.; под ред. Г.В. Тягунова, Ю.Г. Ярошенко. М.: Логос, 2010. – 504 с.

9. Геоинформационное образование в России (электронный ресурс). Режим доступа http://kartaplus.ru/gis3.

Катастрофическое нарастание экологического неблагополучия на Земле является побочным результатом экономического развития. Если в прошлом столетии на загрязнение окружающей среды закрывали глаза, то сегодня мировое сообщество пришло к выводу о невозможности здорового общества и здоровой экономики при неблагоприятной среде жизни. Особенно остро стоит вопрос экологического мониторинга в горно-промышленных регионах России. Бурное развитие горнодобывающего, металлургического, химико-технологического и машиностроительного производств наносит огромный вред природе в виде окружающей среды вредными отходами техногенного производства. Экономическое развитие должно прекратить разрушение окружающей среды, чтобы спасти человечество от экологических катастроф и не допустить изменения природной сферы, происходящие во вред как людям, так и другим формам жизни. В связи с этим актуальным и востребованным становится экологическое образование. Сегодня без грамотного эколога не должно обходиться ни одно промышленное предприятие.

В настоящее время многие развитые страны мира осознали необходимость экологического образования населения для обеспечения социально-политической и экологической стабильности государств, их национальной безопасности. Экологическое образование стоит в одном ряду со знанием родного языка, информационных технологий, основ экономики и является востребованным на рынке труда.

В экономически развитых странах экологическое образование имеет достаточно большую историю и опыт, подкреплено национальными законами, гарантированным финансированием, эффективной инфраструктурой государственно-общественных организаций. Так, в 1990 г. в США был принят национальный Закон «Об образовании в области окружающей среды». В нем определены цели и политика; аппарат управления; основные направления содержания; финансирование; подготовка кадров; структура советов, комиссий, фондов, их полномочия; поощрения в системе экологического образования.

Российское экологическое просвещение стало развиваться в 70-е годы XX века, именно тогда начался переход от просвещения в области проблем окружающей среды к природоохранной деятельности. В качестве одного из приоритетных направлений решения экологических проблем определены экологическое образование, просвещение и воспитание населения. В 2007 году лабораторией экологического образования Института содержания и методов обучения, была разработана Концепция общего экологического образования для устойчивого развития.

С позиции концепции с особым вниманием нужно относиться к принципу Ле-Шателье: «любое изменение среды (вещества, энергии, информатизации, динамических качеств экосистем) неизбежно приводит к развитию природных цепных реакций, идущих в сторону нейтрализации произведенного изменения или формирования новых природных систем, образование которых при значительных изменениях среды может принять необратимый характер». Приведем в качестве доказательства принципа пример пожаров в России летом 2010 года. Причина этих пожаров кроется в осушении болот Восточно-европейской равнины для добычи торфа. После распада СССР болота забросили и не проанализировали ситуацию, оставшийся торф в условиях аномально жаркого лета стал причиной пожаров, в которых пострадало 199 населенных пунктов в 19 субъектах федерации, сгорели 3,2 тысячи домов, погибли люди. Общий ущерб составил свыше 12 миллиардов рублей .

Сводная таблица потерь от пожаров и наводнений

Материальный ущерб

(Все пожары)

500 тысяч га.

53 человека от пламени

55800 от вторичных факторов

15 млрд. р.

Июль-август

Центральный федеральный округ

(Преимущественно торфяные пожары)

Увеличение смертности в Москве на 1000 человек в день

Убытки на строительство нового жилья и компенсации погорельцам 6,5 млрд. р.

Июль-август

Наводнения

Краснодарский край

520 тысяч кв. м.

172 человека

20 млрд. р.

Дальний восток

8 млн. кв. км.

40 млрд. р.

Август-ноябрь 2013 г.

В России насчитывается около 5 миллионов гектаров осушенных болот, большая часть которых находится в густонаселенных регионах Европейской России. Торфяной пожар считается самым опасным, так как в воздух выбрасывается большее количество углекислого газа, двуокиси серы и дыма, чем при лесных пожарах или травяных палах .

В 2013 году другая стихия - наводнение на Дальнем востоке - нанесла огромный ущерб России. Неожиданность катастрофы явилась настоящим сюрпризом для государства, разрушению подверглись более 190 населенных пунктов в Амурской области, Еврейской автономной области и Хабаровском крае. Было затоплено около 8 тысяч жилых домов с населением 36339 человек (из них более 10 тысяч детей) .

Природные катастрофы, происходящие вблизи промышленных предприятий, создают опасность чрезвычайных ситуаций техногенного характера, борьба с последствиями которых гораздо дороже их своевременного предотвращения.

Накопленный объем фундаментальных знаний о природе, обществе и взаимоотношений в биосфере, эмпирических данных по проблеме «человек и окружающая среда» не обеспечивает необходимый уровень формирования современного научного мировоззрения. Нужно не только знать, но и уметь использовать эти знания в поиске решений проблем сохранения природы и обеспечения устойчивого развития природы и общества.

Концепция устойчивого развития может быть реализована только при условии соблюдения девяти принципиальных подходов . Первый из них - это борьба с причинами, а не с последствиями неблагоприятной деятельности людей, а восьмой - формирование экологического мышления, развитие экологического образования, обеспечивающего повышение экологической культуры общества.

  • приоритет социальных аспектов экологических проблем;
  • анализ естественной и созданной человеком окружающей среды;
  • требование информированности и знаний законов устойчивого развития;
  • междисциплинарность;
  • значение навыков, отношений, ценностей и желания участвовать в принятии решений, направленных на улучшение качества окружающей среды.

В этих принципах заложено содержание экологических компетенций, которые необходимо формировать как результат экологического образования.

Современное экологическое образование тесно связано с использованием информационных технологий, среди которых, прежде всего, следует выделить геоинформационные технологии и средства дистанционного зондирования Земли (ДЗЗ). Именно они дают возможность наглядно оценить обстановку вокруг места аварии, рассчитать зону паводкового затопления, продвижение фронта пожара, распространение химического или радиоактивного загрязнения. С их помощью можно автоматически подсчитать площади пострадавших участков, оценить объемы химических и радиоактивных осадков, выделить населенные пункты и прочие объекты, находящиеся в пределах опасной территории .

Использование геоинформационных систем (ГИС) позволяет оперативно получать информацию по запросу и отображать её на картооснове, оценивать состояние экосистемы и прогнозировать её развитие.

Использование материалов космической съемки рассматривается в качестве необходимого элемента формирования и функционирования региональной ГИС «Управление рисками чрезвычайных ситуаций в Свердловской области». К числу наиболее актуальных для Свердловской области относятся задачи обнаружения лесных пожаров, определения границ затопления (паводковых вод), актуализация сведений о состоянии шлаконакопителей, промышленных свалок.

По данным МЧС по Свердловской области паводкоопасными являются более 20 районов, сложная паводковая ситуация весной наблюдается в бассейнах рек Исеть, Уфа, Тагила, Сылва, Пышма и Тура. Проект по космическому мониторингу поводковой ситуации выполнялся в Центре космического мониторинга Уральского федерального университета имени первого Президента России Б.Н. Ельцина. Материалы работы предоставлялись в Территориальный центр мониторинга и реагирования на чрезвычайные ситуации в Свердловской области, специалисты которого положительно оценили возможности космических снимков для анализа состояния водных объектов и выявления территории затопления .

Важным источником информации о состоянии окружающей среды и природных ресурсах являются данные ДЗЗ с помощью оптоэлектронных многозональных и радиолокационных систем наблюдения. Информация, получаемая от систем космической съемки, применяется при решении задач экологического мониторинга лесного хозяйства (обнаружение лесных пожаров, выявление гарей, сухостоев, оценка вырубленных площадей и состояния лесных массивов), водного хозяйства (выявление взвесей, разливов нефтепродуктов и льяльных вод в акваториях портов и прибрежных зонах) нефтегазового комплекса (выявление загрязнений почвы тяжелыми фракциями нефтепродуктов) земельного кадастра внегородских территорий, и т.п.

Задачи управления рисками природных и техногенных чрезвычайных ситуаций, возможно, оперативно решать только при условии применения специальных информационных технологий. Однако, многие ведомства и организации все чаще вынуждены признать, что они не обладают квалифицированными кадрами, знающими, как использовать ГИС-технологии, не владеют современными аппаратно-программными средствами работы с цифровыми геопространственными данными, не знают как эффективно их поддерживать или архивировать . Недостаточная компетентность природоведов ведет к низкому качеству мониторинга экологических катастроф.

В стандарте ФГОС ВПО по направлению подготовки 022000 «Экология и природопользование» (бакалавриат) в списке общекультурных компетенций указано, что выпускник должен владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки работы с компьютером как средством управления информацией (ОК-13). Однако в списке профессиональных компетенций отсутствуют компетенции, связанные с профессиональным владением современных информационных технологий, необходимых для работы эколога.

В учебном плане, утвержденном в Уральском государственном горном университете, по направлению подготовки 022000 - «Экология и природопользование» из дисциплин информационной направленности присутствует только «Информатика» в объеме 144 часов. Такого объема явно недостаточно, для того чтобы овладеть современными информационными ГИС-технологиями и приобрести навыки решения экологических задач. Кроме того, лаборатории выпускающей кафедры «Геоэкология» не оснащены оборудованием, позволяющим изучать ГИС-технологии. Выход из этой непростой ситуации видится в межвузовском сотрудничестве Уральского государственного горного университета и Центра космического мониторинга Уральского федерального университета имени первого Президента России Б.Н. Ельцина.

Становится очевидной необходимость ориентации экологического образования на максимальное использование возможностей геоинформационных технологий в решении вопросов охраны окружающей среды. Доступность космической съемки и современные геоинформационные технологии обработки изображений способны стать мощным средством организации контроля над самыми различными аспектами человеческой деятельности.

Рецензенты:

Хорошавин Л.Б., д.т.н., профессор, академик Международной Академии наук экологии, безопасности человека и природы, ведущий научный сотрудник Уральского отделения академии технологических наук, научный сотрудник УФ ФГБОУ ВНИИ ГОЧС (ФЦ) МЧС России, г. Екатеринбург;

Мельчаков Ю.Л., д.г.н., профессор кафедры географии и методики географического образования, доцент, ФГБОУ ВПО «Уральский государственный педагогический университет», г. Екатеринбург.

Работа поступила в редакцию 07.08.2014.

Библиографическая ссылка

Папуловская Н.В., Бадьина Т.А., Бадьин И.Д. РОЛЬ ГЕОИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СОВРЕМЕННОМ ЭКОЛОГИЧЕСКОМ ОБРАЗОВАНИИ // Фундаментальные исследования. – 2014. – № 9-8. – С. 1849-1853;
URL: http://fundamental-research.ru/ru/article/view?id=35154 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Подобные документы

    Информационное обеспечение экологических исследований. Структура и особенности экспертной системы. Преимущества геоинформационных систем. Модели в "математической экологии". Системы получения данных. Объединение различных информационных технологий.

    реферат , добавлен 11.12.2014

    Определение экологии. Основные разделы. Законы экологии. Организм и среда. Практическое значение экологии. Взаимодействие сельскохозяйственных и природных экосистем, сочетания окультуренных и естественных ландшафтов.

    реферат , добавлен 25.10.2006

    Зарождение и становление экологии как науки. Взгляды Ч. Дарвина на борьбу за существование. Оформление экологии в самостоятельную отрасль знаний. Свойства "живого вещества" согласно учению В.И. Вернадского. Превращение экологии в комплексную науку.

    реферат , добавлен 21.12.2009

    Структура современной экологии как науки. Понятие среды обитания и экологических факторов. Экологическое значение пожаров. Биосфера как одна из геосфер Земли. Сущность законов экологии Коммонера. Опасность загрязнителей (поллютантов) и их разновидности.

    контрольная работа , добавлен 22.06.2012

    История развития экологии. Становление экологии как науки. Превращение экологии в комплексную науку, включающую в себя науки об охране природной и окружающей человека среды. Первые природоохранные акты на Руси. Биография Келлера Бориса Александровича.

    реферат , добавлен 28.05.2012

    Типы систем в экологии. Задачи исследований и границы выделения системы во времени и пространстве. Целостность системы, принцип эмерджентности. Прямые и обратные связи в наземной экосистеме. Характеристика концептуальных принципов выделения систем.

    презентация , добавлен 03.04.2013

    Основы экологии человека: понятия и термины. Взаимосвязь экологии человека с проблемами сохранения здоровья. Главные аксиомы экологии. Понятие зоны экологической стабильности, нестабильности. Важнейшие современные антропогенные экосистемы, их особенности.

    реферат , добавлен 24.12.2014

    Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.

    реферат , добавлен 10.05.2010

    История зарождения и этапы становления экологии как науки, оформление экологии в самостоятельную отрасль знаний, превращение экологии в комплексную науку. Возникновение новых направлений науки: биоценология, геоботаника, популяционная экология.

    реферат , добавлен 06.06.2010

    Теоретические проблемы социальной экологии. Информационные, математические и нормативно-технологические методы, их закономерности, специфика и объективная необходимость единства. Основные законы социальной экологии, их сущность, содержание и значение.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    История создания географических информационных систем, их классификация и функции. Сущность геохимической оценки техногенных аномалий. Применение геоинформационной системы ArcView 9 для оценки загрязнения тяжелыми металлами атмосферного воздуха г. Ялты.

    дипломная работа , добавлен 19.12.2012

    Информационное обеспечение экологических исследований. Структура и особенности экспертной системы. Преимущества геоинформационных систем. Модели в "математической экологии". Системы получения данных. Объединение различных информационных технологий.

    реферат , добавлен 11.12.2014

    Особенности экологии района: основные проблемы Челябинской области в сфере экологии, влияние промышленных предприятий на экологию, пути и методы решения экологических проблем. Усовершенствование технологий по очистке природной среды от отходов.

    доклад , добавлен 15.07.2008

    Основные виды хроматографии. Применение хроматографических методов в экологическом мониторинге. Применение хроматографии в анализе объектов окружающей среды. Современное аппаратурное оформление. Методы проявления хроматограмм и работа хроматографа.

    курсовая работа , добавлен 08.01.2010

    Использование геоинформационных систем для создания карт основных параметров окружающей среды в нефтегазовой отрасли с целью выявления масштабов и темпов деградации флоры и фауны. Базовые основы системы мониторинга и комплексной оценки природной среды.

    курсовая работа , добавлен 27.02.2011

    Понятие мониторинга загрязнения вредными веществами, его цели и задачи, классификация. Институты регионального мониторинга состояния экологии. Построение системы регионального наблюдения в Республике Беларусь. Некоторые результаты стационарных наблюдений.

    реферат , добавлен 30.05.2015

    презентация , добавлен 27.11.2015

    Общая характеристика загрязнений естественного и антропогенного происхождения, физические, химические и биологические загрязнения природной среды. Последствия загрязнения и неблагоприятное изменение нашего окружения, контроль и ликвидация отходов.