Все о печах и каминах - Информационный портал

Дигибридное скрещивание. Примеры решения типовых задач

Основные термины генетики

  • Ген - это участок молекулы ДНК, несущий информацию о первичной структуре одного белка. Ген - это структурная и функциональная единица наследственности.
  • Аллельные гены (аллели) - разные варианты одного гена, кодирующие альтернативное проявление одного и того же признака. Альтернативные признаки - признаки, которые не могут быть в организме одновременно.
  • Гомозиготный организм - организм, не дающий расщепления по тем или иным признакам. Его аллельные гены одинаково влияют на развитие данного признака.
  • Гетерозиготный организм - организм, дающий расщепление по тем или иным признакам. Его аллельные гены по-разному влияют на развитие данного признака.
  • Доминантный ген отвечает за развитие признака, который проявляется у гетерозиготного организма.
  • Рецессивный ген отвечает за признак, развитие которого подавляется доминантным геном. Рецессивный признак проявляется у гомозиготного организма, содержащего два рецессивных гена.
  • Генотип - совокупность генов в диплоидном наборе организма. Совокупность генов в гаплоидном наборе хромосом называется геномом.
  • Фенотип - совокупность всех признаков организма.

При решении задач по генетике необходимо:

  1. Определить виды скрещивания и взаимодействий аллельных и неалельных генов(определить характер скрещивания).
  2. Определить доминантный и рецессивный признак(-и) по условию задачи, рисунку, схеме или по результатам скрещивания F 1 и F 2 .
  3. Ввести буквенные обозначения доминантного (заглавной буквой) и рецессивного (прописной буквой) признаков, если они не даны в условии задачи.
  4. Записать фенотипы и генотипы родительских форм.
  5. Записать фенотипы и генотипы потомков.
  6. Составить схему скрещивания, обязательно указать гаметы, которые образуют родительские формы.
  7. Записать ответ.

При решении задач на взаимодействие неаллельных генов необходимо:

  1. Сделать краткую запись задачи.
  2. Вести анализ каждого признака отдельно, сделав по каждому признаку соответствующую запись.
  3. Применить формулы моногибридного скрещивания, если ни одна из них не подходит, то
    • Сложить вес числовые показатели в потомстве, разделить сумму на 16, найти одну часть и выразить все числовые показатели в частях.
    • Исходя из того, что расщепление в F 2 дигибридного скрещивания идёт по формуле 9А_В_ : 3A_bb: 3 ааВ_ : l aabb, найти генотипы Fr
    • По F 2 найти генотипы F
    • По F найти генотипы родителей.

Формулы для определения характера скрещивания:

где n - число аллелей, пар признаков

  • Расщепление по генотипу – (3:1) n
  • Расщепление по фенотипу – (1:2:1) n
  • Количество типов гамет – 2 n
  • Количество фенотипических классов - 2 n
  • Количество генотипических классов - 3 n
  • Число возможных комбинаций, сочетаний гамет – 4 n

Основные правила при решении генетических задач:

  1. Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.
  2. Если в результате скрещивания особей, отличающихся феиотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей была гетерозиготна, а другая - гомозиготна по рецессивному признаку.
  3. Если при скрещивании феиотипически одинаковых (по одной паре признаков) особей в первом поколении гибридов происходит расщепление признаков на три фенотипические группы в отношениях 1:2:1, то это свидетельствует о неполном доминировании и о том, что родительские особи гетерозиготны.
  4. Если при скрещивании двух феиотипически одинаковых особей в потомстве происходит расщепление признаков в соотношении 9:3:3:1, то исходные особи были дигетерозиготными.

Дигибридное скрещивание. Примеры решения типовых задач

Задача 1. У человека сложные формы близорукости доминируют над нормальным зрением, карий цвет глаз – над голубым. Кареглазый близорукий мужчина, мать которого имела голубые глаза и нормальное зрение, женился на голубоглазой женщине с нормальным зрением. Какова вероятность в % рождения ребенка с признаками матери?

Решение

Ген Признак

A развитие близорукости

a нормальное зрение

B карие глаза

b голубые глаза

P ♀ aabb x ♂ AaBb

G ab, AB, Ab aB, ab

F 1 AaBb; Aabb; aaBb; aabb

Ответ : голубые глаза и нормальное зрение имеет ребенок с генотипом aabb. Вероятность рождения ребенка с такими признаками составляет 25 %.

Задача 2 . У человека рыжий цвет волос доминирует над русым, а веснушки – над их отсутствием. Гетерозиготный рыжеволосый без веснушек мужчина женился на русоволосой женщине с веснушками. Определить в % вероятность рождения ребенка рыжеволосого с веснушками.

Решение

Ген Признак

A рыжие волосы

a русые волосы

B наличие веснушек

b отсутствие веснушек

P ♀ Aabb x ♂ aaBB

F 1 AaBb ; aaBb

Рыжеволосый ребенок с веснушками имеет генотип AaBb. Вероятность рождения такого ребенка составляет 50 %.

Ответ : вероятность рождения рыжеволосого с веснушками ребенка составляет 50 %.

Задача 3 . Гетерозиготная женщина, имеющая нормальную кисть и веснушки, вступила в брак с шестипалым гетерозиготным мужчиной, у которого нет веснушек. Какова вероятность рождения у них ребенка с нормальной кистью и без веснушек?

Решение

Ген Признак

A шестипалость (полидактилия),

a нормальная кисть

B наличие веснушек

b отсутствие веснушек

P ♀ aaBb x ♂ Aаbb

G aB, ab, Ab, ab

F 1 AaBb; Aabb; aaBb; aabb

Ответ : вероятность рождения ребенка с генотипом aabb (c нормальной кистью, без веснушек) составляет 25 %.

Задача 4 . Гены, определяющие предрасположенность к катаракте и рыжие волосы, находятся в разных парах хромосом. Рыжеволосая с нормальным зрением женщина вышла замуж за светловолосого мужчину с катарактой. С какими фенотипами у них могут родиться дети, если мать мужчины имеет такой же фенотип, как и жена?

Решение

Ген Признак

A светлые волосы,

a рыжие волосы

B развитие катаракты

b нормальное зрение

P ♀ aabb x ♂ AaBb

G ab, AB, Ab, aB, ab

F 1 AaBb; Aabb; aaBb; aabb

Ответ : фенотипы детей – светловолосый с катарактой (AaBb); светловолосый без катаракты (Aabb); рыжеволосый с катарактой (aaBb); рыжеволосый без катаракты (aabb).

Задача 5. Какова вероятность в процентах рождения ребенка с сахарным диабетом, если оба родителя являются носителями рецессивного гена сахарного диабета. При этом у матери резус-фактор крови положительный, а у отца – отрицательный. Оба родителя являются гомозиготами по гену, определяющему развитие резус-фактора. Кровь, с каким резус-фактором будет у детей этой семейной пары?

Решение

Ген Признак

A нормальный углеводный обмен

a развитие сахарного диабета

Rh + резус-положительная кровь

rh - резус-отрицательная кровь.

P♀ AaRh + Rh + x ♂ Aarh - rh -

G ARh + , aRh + , Arh - , arh -

F 1 AARh + rh - ; AaRh + rh - ; AaRh + rh - ; aaRh + rh -

Ответ: вероятность рождения ребенка с сахарным диабетом – 25 %, у всех детей в этой семье будет положительный резус-фактор.

Задача 6 . Нормальный рост у овса доминирует над гигантизмом, раннеспелость над позднеспелостью. Гены обоих признаков находятся в разных парах хромосом. Какой процент позднеспелых растений нормального роста можно ожидать от скрещивания гетерозиготных по обоим признакам растений?

Решение

P ♀ AaBb x ♂ AaBb

G AB, Ab, AB , Ab,

Генетика, ее задачи. Наследственность и изменчивость - свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме

Генетика, ее задачи

Успехи естествознания и клеточной биологии в XVIII-XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами. Даже сформулированная Х. де Фризом в 1889 году теория внутриклеточного пангенеза, которая предполагала существование в ядре клетки неких «пангенов », определяющих наследственные задатки организма, и выход в протоплазму только тех из них, которые определяют тип клетки, не смогла изменить ситуацию, как и теория «зародышевой плазмы» А. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются.

Лишь труды чешского исследователя Г. Менделя (1822-1884) стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К. Корренсом и Х. де Фризом — вынудило научную общественность обратиться к истокам генетики.

Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими.

Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека.

Наследственность и изменчивость - свойства организмов

Наследственность — это способность организмов передавать свои признаки и свойства в ряду поколений.

Изменчивость — свойство организмов приобретать новые признаки в течение жизни.

Признаки — это любые морфологические, физиологические, биохимические и иные особенности организмов, по которым одни из них отличаются от других, например цвет глаз. Свойствами же называют любые функциональные особенности организмов, в основе которых лежит определенный структурный признак или группа элементарных признаков.

Признаки организмов можно разделить на качественные и количественные . Качественные признаки имеют два-три контрастных проявления, которые называют альтернативными признаками, например голубой и карий цвет глаз, тогда как количественные (удойность коров, урожайность пшеницы) не имеют четко выраженных различий.

Материальным носителем наследственности является ДНК. У эукариот различают два типа наследственности: генотипическую и цитоплазматическую . Носители генотипической наследственности локализованы в ядре и далее речь пойдет именно о ней, а носителями цитоплазматической наследственности являются находящиеся в митохондриях и пластидах кольцевые молекулы ДНК. Цитоплазматическая наследственность передается в основном с яйцеклеткой, поэтому называется также материнской.

В митохондриях клеток человека локализовано небольшое количество генов, однако их изменение может оказывать существенное влияние на развитие организма, например приводить к развитию слепоты или постепенному снижению подвижности. Пластиды играют не менее важную роль в жизни растений. Так, в некоторых участках листа могут присутствовать бесхлорофильные клетки, что приводит, с одной стороны, к снижению продуктивности растения, а с другой — такие пестролистные организмы ценятся в декоративном озеленении. Воспроизводятся такие экземпляры в основном бесполым способом, так как при половом размножении чаще получаются обычные зеленые растения.

Методы генетики

1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства. При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г. Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям.

2. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития.

3. Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов.

4. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т. д.

5. Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции.

6. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. д.

Основные генетические понятия и символика

Ген — это участок молекулы ДНК, или хромосомы, несущий информацию об определенном признаке или свойстве организма.

Некоторые гены могут оказывать влияние на проявление сразу нескольких признаков. Такое явление называется плейотропией . Например, ген, обусловливающий развитие наследственного заболевания арахнодактилии (паучьи пальцы), вызывает также искривление хрусталика, патологии многих внутренних органов.

Каждый ген занимает в хромосоме строго определенное место — локус . Так как в соматических клетках большинства эукариотических организмов хромосомы парные (гомологичные), то в каждой из парных хромосом находится по одной копии гена, отвечающего за определенный признак. Такие гены называются аллельными .

Аллельные гены чаще всего существуют в двух вариантах — доминантном и рецессивном. Доминантной называют аллель, которая проявляется вне зависимости от того, какой ген находится в другой хромосоме, и подавляет развитие признака, кодируемого рецессивным геном. Доминантные аллели обозначаются обычно прописными буквами латинского алфавита (A, B, C и др.), а рецессивные — строчными (a, b, c и др.). Рецессивные аллели могут проявляться только в том случае, если они занимают локусы в обеих парных хромосомах.

Организм, у которого в обеих гомологичных хромосомах находятся одинаковые аллели, называется гомозиготным по данному гену, или гомозиготой (AA, aa, ААBB, ааbb и т. д.), а организм, у которого в обеих гомологичных хромосомах находятся разные варианты гена — доминантный и рецессивный — называется гетерозиготным по данному гену, или гетерозиготой (Aa, АаBb и т. д.).

Ряд генов может иметь три и более структурных варианта, например группы крови по системе AB0 кодируются тремя аллелями — I A , I B , i. Такое явление называется множественным аллелизмом. Однако даже в этом случае каждая хромосома из пары несет только одну аллель, то есть все три варианта гена у одного организма не могут быть представлены.

Геном — совокупность генов, характерная для гаплоидного набора хромосом.

Генотип — совокупность генов, характерная для диплоидного набора хромосом.

Фенотип — совокупность признаков и свойств организма, которая является результатом взаимодействия генотипа и окружающей среды.

Поскольку организмы отличаются между собой многими признаками, установить закономерности их наследования можно только при анализе двух и более признаков в потомстве. Скрещивание, при котором рассматривается наследование и проводится точный количественный учет потомства по одной паре альтернативных признаков, называется моногибридны м, по двум парам — дигибридным , по большему количеству признаков — полигибридным .

По фенотипу особи далеко не всегда можно установить ее генотип, поскольку как гомозиготный по доминантному гену организм (АА), так и гетерозиготный (Аа) будет иметь в фенотипе проявление доминантной аллели. Поэтому для проверки генотипа организма с перекрестным оплодотворением применяют анализирующее скрещивание — скрещивание, при котором организм с доминантным признаком скрещивается с гомозиготным по рецессивному гену. При этом гомозиготный по доминантному гену организм не будет давать расщепления в потомстве, тогда как в потомстве гетерозиготных особей наблюдается равное количество особей с доминантным и рецессивным признаками.

Для записи схем скрещиваний чаще всего применяются следующие условные обозначения:

Р (от лат. парента — родители) — родительские организмы;

$♀$ (алхимический знак Венеры — зеркало с ручкой) — материнская особь;

$♂$ (алхимический знак Марса — щит и копье) — отцовская особь;

$×$ — знак скрещивания;

F 1 , F 2 , F 3 и т. д. — гибриды первого, второго, третьего и последующих поколений;

F а — потомство от анализирующего скрещивания.

Хромосомная теория наследственности

Основоположник генетики Г. Мендель, равно как и его ближайшие последователи, не имели ни малейшего представления о материальной основе наследственных задатков, или генов. Однако уже в 1902-1903 годах немецкий биолог Т. Бовери и американский студент У. Сэттон независимо друг от друга предположили, что поведение хромосом при созревании клеток и оплодотворении позволяет объяснить расщепление наследственных факторов по Менделю, т. е., по их мнению, гены должны быть расположены в хромосомах. Данные предположения стали краеугольным камнем хромосомной теории наследственности.

В 1906 году английские генетики У. Бэтсон и Р. Пеннет обнаружили нарушение менделевского расщепления при скрещивании душистого горошка, а их соотечественник Л. Донкастер в экспериментах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. Результаты этих экспериментов явно противоречили менделевским, но если учесть, что к тому времени уже было известно о том, что количество известных признаков для экспериментальных объектов намного превышало количество хромосом, а это наводило на мысль, что каждая хромосома несет более одного гена, а гены одной хромосомы наследуются совместно.

В 1910 году начинаются эксперименты группы Т. Моргана на новом экспериментальном объекте — плодовой мушке дрозофиле. Результаты этих экспериментов позволили к середине 20-х годов XX века сформулировать основные положения хромосомной теории наследственности, определить порядок расположения генов в хромосомах и расстояния между ними, т. е. составить первые карты хромосом.

Основные положения хромосомной теории наследственности:

  1. Гены расположены в хромосомах. Гены одной хромосомы наследуются совместно, или сцепленно, и называются группой сцепления . Число групп сцепления численно равно гаплоидному набору хромосом.
  2. Каждый ген занимает в хромосоме строго определенное место — локус.
  3. Гены в хромосомах расположены линейно.
  4. Нарушение сцепления генов происходит только в результате кроссинговера.
  5. Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними.
  6. Независимое наследование характерно только для генов негомологичных хромосом.

Современные представления о гене и геноме

В начале 40-х годов ХХ века Дж. Бидл и Э. Тейтум, анализируя результаты генетических исследований, проведенных на грибе нейроспоре, пришли к выводу, что каждый ген контролирует синтез какого-либо фермента, и сформулировали принцип «один ген — один фермент».

Однако уже в 1961 году Ф. Жакобу, Ж. Л. Моно и А. Львову удалось расшифровать структуру гена кишечной палочки и исследовать регуляцию его активности. За это открытие им в 1965 году была присуждена Нобелевская премия по физиологии и медицине.

В процессе исследования, кроме структурных генов, контролирующих развитие определенных признаков, им удалось выявить и регуляторные, основной функцией которых является проявление признаков, кодируемых другими генами.

Структура прокариотического гена. Структурный ген прокариот имеет сложное строение, поскольку в его состав входят регуляторные участки и кодирующие последовательности. К регуляторным участкам относятся промотор, оператор и терминатор. Промотором называют участок гена, к которому прикрепляется фермент РНК-полимераза, обеспечивающий синтез иРНК в процессе транскрипции. С оператором , располагающимся между промотором и структурной последовательностью, может связываться белок-репрессор , не позволяющий РНК-полимеразе начать считывание наследственной информации с кодирующей последовательности, и только его удаление позволяет начать транскрипцию. Структура репрессора закодирована обычно в регуляторном гене, находящемся в другом участке хромосомы. Считывание информации заканчивается на участке гена, который называется терминатором .

Кодирующая последовательность структурного гена содержит информацию о последовательности аминокислот в соответствующем белке. Кодирующую последовательность у прокариот называют цистроном , а совокупность кодирующих и регуляторных участков гена прокариот — опероном . В целом прокариоты, к которым относится и кишечная палочка, имеют сравнительно небольшое количество генов, расположенных в единственной кольцевой хромосоме.

Цитоплазма прокариот может содержать также дополнительные небольшие кольцевые или незамкнутые молекулы ДНК, которые называются плазмидами. Плазмиды способны встраиваться в хромосомы и передаваться от одной клетки к другой. Они могут нести информацию о половых признаках, патогенности и устойчивости к антибиотикам.

Структура эукариотического гена. В отличие от прокариот, гены эукариот не имеют оперонной структуры, поскольку не содержат оператора, и каждый структурный ген сопровождается только промотором и терминатором. Кроме того, в генах эукариот значащие участки (экзоны ) чередуются с незначащими (интронами ), которые полностью переписываются на иРНК, а затем вырезаются в процессе их созревания. Биологическая роль интронов состоит в снижении вероятности мутаций в значащих участках. Регуляция генов эукариот намного сложнее, нежели описанная для прокариот.

Геном человека. В каждой клетке человека в 46 хромосомах находится около 2 м ДНК, плотно упакованной в двойную спираль, которая состоит примерно из 3,2 $×$ 10 9 нуклеотидных пар, что обеспечивает около 10 1900000000 возможных уникальных комбинаций. К концу 80-х годов ХХ века было известно расположение примерно 1500 генов человека, однако их общее количество оценивали примерно в 100 тыс., поскольку только наследственных болезней у человека имеется примерно 10 тыс., не говоря уже о количестве разнообразных белков, содержащихся в клетках.

В 1988 году стартовал международный проект «Геном человека», который к началу XXI века закончился полной расшифровкой последовательности нуклеотидов. Он дал возможность понять, что два разных человека на 99,9 % имеют сходные последовательности нуклеотидов, и лишь остающиеся 0,1 % определяют нашу индивидуальность. Всего было обнаружено примерно 30-40 тыс. структурных генов, однако затем их количество было снижено до 25-30 тыс. Среди этих генов имеются не только уникальные, но и повторяющиеся сотни и тысячи раз. Тем не менее данные гены кодируют гораздо большее количество белков, например десятки тысяч защитных белков — иммуноглобулинов.

97 % нашего генома является генетическим «мусором», который существует только потому, что умеет хорошо воспроизводиться (РНК, которые транскрибируются на этих участках, никогда не покидают ядро). Например, среди наших генов есть не только «человеческие» гены, но и 60 % генов, похожих на гены мушки дрозофилы, а с шимпанзе нас роднит до 99 % генов.

Параллельно с расшифровкой генома происходило и картирование хромосом, вследствие этого удалось не только обнаружить, но и определить расположение некоторых генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов.

Расшифровка генома человека пока не дает прямого эффекта, поскольку мы получили своеобразную инструкцию по сборке такого сложного организма, как человек, но не научились изготавливать его или хотя бы исправлять погрешности в нем. Тем не менее эра молекулярной медицины уже на пороге, во всем мире идет разработка так называемых генопрепаратов, которые смогут блокировать, удалять или даже замещать патологические гены у живых людей, а не только в оплодотворенной яйцеклетке.

Не следует забывать и о том, что в эукариотических клетках ДНК содержится не только в ядре, но также в митохондриях и пластидах. В отличие от ядерного генома, организация генов митохондрий и пластид имеет много общего с организацией генома прокариот. Несмотря на то что эти органеллы несут менее 1 % наследственной информации клетки и не кодируют даже полного набора белков, необходимых для их собственного функционирования, они способны существенно влиять на некоторые признаки организма. Так, пестролистность у растений хлорофитума, плюща и других наследует незначительное число потомков даже при скрещивании двух пестролистных растений. Это обусловлено тем, что пластиды и митохондрии передаются большей частью с цитоплазмой яйцеклетки, поэтому такая наследственность называется материнской, или цитоплазматической, в отличие от генотипической, которая локализуется в ядре.

У человека темный цвет волос (А) доминирует над светлым цветом (а), карий цвет глаз (В) - над голубым (b). Запишите генотипы родителей, возможные фенотипы и генотипы детей, родившихся от брака светловолосого голубоглазого мужчины и гетерозиготной кареглазой светловолосой женщины.

Ответ

Светловолосый голубоглазый мужчина aabb.
Гетерозиготная кареглазая светловолосая женщина aaBb.


Врожденная близорукость наследуется как аутосомный доминантный признак, отсутствие веснушек - как аутосомный рецессивный признак. Признаки находятся в разных парах хромосом. У отца врожденная близорукость и отсутствие веснушек, у матери нормальное зрение и веснушки. В семье трое детей, двое близорукие без веснушек, один с нормальным зрением и с веснушками. Составьте схему решения задачи. Определите генотипы родителей и родившихся детей. Рассчитайте вероятность рождения детей близоруких и с веснушками. Объясните, какой закон имеет место в данном случае.

Ответ

А - врожденная близорукость, а - нормальное зрение.
B - веснушки, b - отсутствие веснушек.

Отец A_bb, мать aaB_.
Дети A_bb, aaB_.

Если отец bb, то все его дети имеют b, значит второй ребенок aaBb.
Если мать aa, то все её дети имеют a, значит первый ребенок Aabb.
Если первый ребенок имеет bb, то он взял одну b от матери и одну от отца, значит мать aaBb.
Если второй ребенок имеет аа, то он взял одну а от матери и одну от отца, значит отец Aabb.


Вероятность рождения близоруких детей с веснушками 25%, работает закон независимого наследования.

У родителей со свободной мочкой уха и треугольной ямкой на подбородке родился ребенок со сросшейся мочкой уха и гладким подбородком. Определите генотипы родителей, первого ребенка, фенотипы и генотипы других возможных потомков. Составьте схему решения задачи. Признаки наследуются независимо.

Ответ

В потомстве проявились рецессивные признаки, которые у родителей находились в скрытом состоянии.

А - свободная мочка уха, а - сросшаяся мочка уха.
B - треугольная ямка на подбородке, b - гладкий подбородок.

Ребенок aabb, родители A_B_.
Ребенок аа получил одну а от отца, другую от матери; одну b от отца, другую от матери, следовательно, родители AaBb.


AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

9 A_B_ свободная мочка уха, треугольная ямка на подбородке
3 A_bb свободная мочка уха, гладкий подбородок
3 aaB_ сросшаяся мочка уха, треугольная ямка на подбородке
1 aabb сросшаяся мочка уха, гладкий побдородок

Черный хохлатый петух скрещен с такой же курицей. От них получены 20 цыплят: 10 черных хохлатых, 5 бурых хохлатых, 3 черных без хохла и 2 бурых без хохла. Определите генотипы родителей, потомков и закономерность наследования признаков. Гены двух признаков не сцеплены, доминантные признаки - черное оперение (А), хохлатость (В).

Ответ

A - черное оперение, а - бурое оперение.
B - хохлатость, b - без хохла.

Петух A_B_, курица A_B_.
Цыплята A_B_ 10 шт., aaB_ 5 шт., A_bb 3 шт., aabb 2 шт.

Если ребенок имеет аа, то он взял одну а от матери и одну от отца, значит родители AaB_.
Если ребенок имеет bb, то он взял одну b от матери и одну от отца, значит родители AaBb.


AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

9 A_B_ черные хохлатые
3 A_bb черные без хохла
3 aaB_ бурые хохлатые
1 aabb бурые без хохла

Закономерность наследования признаков - закон независимого наследования.

Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Основные генетические понятия. Хромосомная теория наследственности. Генотип как целостная система. Развитие знаний о генотипе. Геном человека.


Закономерности наследственности, их цитологические основы. Моно- и дигибридное скрещивание. Закономерности наследования, установленные Г.Менделем. Сцепленное наследование признаков, нарушение сцепления генов. Законы Т.Моргана. Генетика пола. Наследование признаков, сцепленных с полом. Взаимодействие генов. Решение генетических задач. Составление схем скрещивания.


Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции. Норма реакции. Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический аппарат клетки. Защита среды от загрязнения мутагенами. Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм. Наследственные болезни человека, их причины, профилактика.


Селекция, её задачи и практическое значение. Учение Н.И. Вавилова о центрах многообразия и происхождения культурных растений. Закон гомологических рядов в наследственной изменчивости. Методы выведения новых сортов растений, пород животных, штаммов микроорганизмов. Значение генетики для селекции. Биологические основы выращивания культурных растений и домашних животных.


Биотехнология, клеточная и генная инженерия, клонирование. Роль клеточной теории в становлении и развитии биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека, направленные изменения генома).