Все о печах и каминах - Информационный портал

Сварочная инжекторная горелка. Газовая сварочная горелка

Горелки являются основным рабочим инструментом для газовой сварки, пайки, наплавки и нагрева. Существует два основных класса:

  • горелки инжекторные,
  • безинжекторные (рис. 1).

В инжекторные горелки подача горючего газа низкого давления (ниже 1 кПа) в смесительную камеру осуществляется инжектированием его струей кислорода, вытекающего из инжектора. В безынжекторных горелках горючий газ и кислород подаются примерно под одинаковым давлением (50... 100 кПа).

Применяют преимущественно ручные инжекторные горелки универсального и специализированного назначения. Наиболее распространены универсальные горелки инжекторного типа, работающие на ацетилене: горелки малой мощности Г2-05 (рис. 2) и горелки средней мощности ГЗ-06. Они имеют аналогичную конструкцию и отличаются, главным образом, числом и номерами комплектуемых наконечников. к универсальным горелкам, работающим на газах-заменителях ацетилена, относятся горелки ГЗУ-3-02 и ГЗУ-4.

Рисунок 1. Сварочные горелки:
инжекторная - а; безинжекторная - б; 1 - мундштук; 2 - трубка наконечника; 3 - смесительная камера; 4 инжектор; 5, 6 - регулировочные вентили; 7- ствол; 8 - трубка; 9, 10- ниппели

Рисунок 1. Горелка инжекторная Г2-05 малой мощности

В отличие от универсальных горелок специализированные горелки предназначены для выполнения одной технологической операции (наплавки, пайки, резки).

Другие материалы относящиеся к темам "

Горелки: инжекторные и безинжекторные

Газовая сварка, наплавка, резка, пайка" :

Разместив объявление в

Схема и принцип работы инжекторной горелки. Горелка состоит из двух основных частей - ствола и наконечника (рис. 45). Ствол имеет кислородный 1 и ацетиленовый 16 ниппели с трубками 3 и 15, рукоятку 2, корпус 4 с кислородным 5 и ацетиленовым 14 вентилями. С правой стороны горелки (если смотреть по направлению течения газов) находится кислородный вентиль 5, а с левой - ацетиленовый вентиль 14. Вентили служат для пуска, регулирования расхода и прекращения подачи газа при гашении пламени. Наконечник, состоящий из инжектора 13, смесительной камеры 12 и мундштука 7, присоединяется к корпусу ствола горелки накидной гайкой.

Рис. 45. Устройство инжекторной горелки:

1, 16 - кислородный и ацетиленовый ниппели, 2 - рукоятка, 3, 15 - кислородная и ацетиленовая трубки, 4 - корпус, 5, 14 - кислородный и ацетиленовый вентили, 6 - ниппель наконечника, 7 - мундштук. 8 - мундштук для пропан-бутан-кислородной смеси, 9 - штуцер, 10 - подогреватель, 11 - трубка горючей смеси, 12 - смесительная камера, 13 - инжектор; а, б - диаметры выходного канала инжектора смесительной камеры, в - размер зазора между инжектором и смесительной камерой, г - боковые отверстия в штуцере 9 для нагрева смеси, д - диаметр отверстия мундштука

Инжектор 13 представляет собой цилиндрическую деталь с центральным каналом малого диаметра - для кислорода и периферийными, радиально расположенными каналами - для ацетилена.

Рис. 46. Инжекторное устройство:

1 - смесительная камера, 2 - инжектор, 3 - корпус горелки

Инжектор ввертывается в смесительную камеру наконечника и находится в собранной горелке между смесительной камерой и газоподводящими каналами корпуса горелки. Его назначение состоит в том, чтобы кислородной струей создавать разреженное состояние и засасывать ацетилен, поступающий под давлением не ниже 1 кПа. Разрежение за инжектором достигается высокой скоростью (порядка 300 м/с) кислородной струи. Давление кислорода, поступающего через вентиль 5, составляет от 0,05 до 0,4 МПа.

Инжекторное устройство

Инжекторное устройство показано на рис. 46. В смесительной камере кислород перемешивается с ацетиленом, и смесь поступает в канал мундштука. Горючая смесь, выходящая из мундштука со скоростью 100-140 м/с, при зажигании горит, образуя ацетилено-кислородное пламя с температурой до 3150°С.

В комплект горелки входит несколько номеров наконечников. Для каждого номера наконечника установлены размеры каналов инжектора и размеры мундштука. В соответствии с этим изменяется расход кислорода и ацетилена при сварке.

Мастер Куделя © 2013 Копирование материалов сайта разрешено только с указанием автора и прямой ссылки на сайт-источник

Горелкинг

или сага о горелках. Часть 1

С недавних пор наш словарный запас обогатился новыми терминами из различных областей общественной жизни (петтинг, пехтинг и т. п.) Дабы не отставать от моды и от прогрессивной общественности, я назвал свой опус " Горелкинг или сага о горелках (самодельных) " .
К горелкам у меня давно сложились тёплые (иногда даже горячие) отношения. Поэтому я делюсь инфой с особым чувством.
Следует сразу оговорить, что речь здесь пойдёт о газовых, пропановых горелках. И именно инжекционных, потому что окислитель (воздух) в них засасывается сам с помощью струи горючего газа (не путать с гремучим), направленной на выход горелки. Иногда, правда, самотёка воздуха бывает недостаточно, и для повышения температуры горения смеси, воздух нагнетает воздуходувка. Но по- любому, воздух используется не из баллона, а просто атмосферный. Поэтому к данному типу горелок подходит только одна трубка с газом, а именно от пропанового баллона. Поскольку, чтобы выбрать нужную именно для ваших целей горелку, мало просто показать фото и написать что-то, мне пришлось записать видео ролики. Они дают более наглядную картину работы этих устройств.

Мини- горелка

Эта горелка изначально создавалась для пайки скани с очень маленькими деталями, поэтому основной упор сделан на уменьшение диаметра языка пламени. Тогда, когда делалась эта горелка, ещё не продавались маленькие горелки с баллончиком для газа в виде ручки горелки. Поэтому за основу взята универсальная средняя горелка (описание далее) и уменьшены пропорционально все размеры.

Пайка мелких деталей. Иногда для внесения припоя и удержания элементов филиграни не хватает рук:) Особенностью этой горелки является применение рассекателя. Этим достигается стабильность пламени во всём диапазоне давлений (в пределах разумного, конечно), а именно от 0,2 до 3 кг/см2. Количество воздуха не регулируется. Оно подобрано диаметром отверстий подсоса. Если, всё же, приспичит регулировать обогащение смеси, внутрь кольца с накаткой поместить обрезок силиконовой трубки и, вращая кольцо, можно регулировать.Подобранный диаметр отверстия форсунки около 0,12 мм.

Показан один из способов изготовления форсунки. Капилляр припаян к винту, вкрученному в трубку. Винт на ФУМ.Соблюдаем соосность. Можно без капиляра, просверлив на станке латунный винт М3.
А что здесь действительно надо регулировать, так это положение трубки с форсункой. После поджига горелки перемещаем трубку вперёд- назад и найдя оптимальное положение, закрепляем винтом.

Эта горелка является самой универсальной горелкой для пайки мелкой и средней ювелирки твёрдыми припоями. (Конечно, если не надо, чтобы обе руки были свободны :) Зато регулировку можно делать той же рукой, что держит горелку.
Она тоже содержит рассекатель и поэтому сама по себе никогда не погаснет при любых нормальных значениях давления пропана.
Регулировка пламени той же рукой.Силиконовой трубкой защищено место, где подвешивается на крючёк. Ручка из эбонита. При правильной настройке горелка даёт узкий длинный факел.


Вокруг оголовка горелки сделана теплоизолирующая муфта. Её применение позволяет прогреть оголовок, этим можно несколько повысить температуру пламени. Она сделана из асбестового волокна с добавлением каолина и жидкого стекла.
Паяемый предмет должен находиться в восстановительной зоне пламени. Проверить это можно, положив в пламя кусочек медного провода. В восстановительной зоне поверхность металла становится блестящей.

Форсунка на этой горелке выполняется так же, как и на предыдущей. Подобранный диаметр отверстия форсунки 0,16 мм.
Количество воздуха можно также регулировать, поместив внутрь кольца кусочек силиконовой трубки соответствующего диаметра. Но с такими размерами, как у меня на чертеже, смесь уже достаточно сбалансирована.

Средняя прямая горелка

Как видите, над названиями горелок я не очень парился, надо ведь чтобы заголовки были разные. Надо же их как то называть.
Следующая горелка отличается от предыдущих геометрией расположения составных частей, а принципы работы такие же.

У этой горелки пламя более мягкое, поэтому её лучше применять для прогрева чего- нибудь (отжиг проволоки, патинирование) или там, куда предыдущая не достанет. У неё такой же рассекатель, как и у предыдущих горелок. И своеобразно сделан подсос воздуха.


Чертежа на эту горелку нет, потому что основные параметры совпадают с предыдущей горелкой. Оголовок и рассекатель, а также диаметр воздуховода такие же. И, главное, диаметр форсунки такой же.

Большая ручная горелка

Эта горелка является аналогом предыдущих ручных горелок. Все параметры аналогичны, только увеличена мощность. Этой горелкой можно паять не только скань, но и медные трубки холодильников.

Единственной стандартной составляющей в этой горелке является газовый кран. Но не проходной, как в предыдущих случаях, а угловой. На нём всё и крепится.Подобранный диаметр отверстия форсунки 0,23 мм.

Дополнение 1

Сегодня получил очередное письмо с просьбой объяснить где взять капилляры и вообще, как сделать форсунку. Предлагалось даже применить электроэррозию. Я даже не предполагал, что это может вызвать затруднения.
Итак, я это делаю таким образом. Прежде всего я приноровился использовать для форсунок винты М3 (обычный винт с резьбой диаметра 3 мм, метрической).
Итак, берёте свою коробку с винтами М3, вываливаете её и распределяете равномерным слоем. Затем берёте магнит и вытягиваете все притягивающиеся винты. У вас в результате останутся винты, которые не притягиваются. То, что они выглядят так же, как и остальные, не должно вас обмануть. Это латунные винты с гальваническим покрытием. На фото под цифрой 1.
Если нет М3 латунных, ничто не мешает проделать это с М4.

Далее перед вами пять путей:
- сразу просверлить отверстие нужным диаметром сверла. Но это для довольно больших отверстий и при наличии прецизионной сверлилки.
- просверлить с обеих сторон винта большим сверлом, но не до конца. Потом эту перемычку пробить иглой или досверлить малым сверлом.
- просверлить большим сверлом, а затем заполнить отверстие припоем ПОС, а затем уже работать с ним, что гораздо легче.
- просверлить большим сверлом, а затем припоем ПОС впаять соосно в винт нержавеющую проволочку соответствующего диаметра. А затем выдернуть проволочку.
И, наконец, можно впаять легкоплавким припоем ПОС в просверленное отверстие капилляр соответствующего диаметра.
Итак, капилляры, то есть тонкие трубочки.
Под цифрой 2 капилляры из самописцев приборов КИП. Вряд ли вам стало легче от такого совета.
А вот под цифрой 3 самый реальный вариант. Когда вам доктор сделает укол, не охайте, не жалейте себя, а соберите волю в кулак и попросите доктора отдать вам иголку на память. Он отдаст, ему не жалко. Таким образом за больную жизнь свою и своих близких вы соберёте обширную коллекцию капилляров. А если вам повезёт делать уколы импортными шприцами, то ассортимент станет гораздо богаче. У них есть и очень тонкие иглы, например для прививок.
Не забудьте собрать также коллекцию сталистых упругих проволочек для прочистки капилляров- цифра 4.
Цифра 5- в комплекте к моей новой газовой плите шёл целый набор форсунок с разными диаметрами отверстий.
И, наконец, 6- концевые зажимы для монтажа многожильных электрических проводов. Целая куча разных диаметров.

Дополнение 2

Иногда приходят жалобы трудящихся, что горелка не работает или работает как то не так. Здесь выложены только работающие конструкции, теоретических нет. Значит, что то не доглядели или не поняли принцип действия горелок. Сейчас попробую объяснить на примере мини- горелки. Для этого приведу упрощённую схему этой конкретной конструкции.

1. Убедитесь, что давление поступающего газа находится в приемлемом диапазоне 0,2-4 кг/см2. А самый рабочий диапазон от 0,5 до 2,5 кг/см2. А диаметр отверстия форсунки 0,12 +/-0,02 мм.
2. Отверстия для подсоса воздуха не закрыты.
3. На рисунке. Диаметр трубки с подающейся газовоздушной смесью 3,5 мм. А центральное отверстие в рассекателе диаметром 3 мм. То есть на 0,5 мм меньше. Поэтому часть потока газовоздушной смеси расходится в стороны в маленькие отверстия. Скорость потока через эти отверстия меньше, чем основного потока. Эти маленькие отверстия как раз и предназначены для поджига основного потока. А из за небольшой скорости газовоздушной смеси через них горят стабильно и не дают сдуть пламя основного потока. Это справедливо для всех горелок такого типа, что на этой страничке, с рассекателями пламени.
4. Исходя из вышесказанного проверьте, остался ли зазор в 2 мм между обеими частями головки горелки. При правильном изготовлении по чертежам, этот зазор будет. Иначе вы будете наблюдать только центральный факел, без боковых огоньков, который легко сдувается при повышении давления поступающего на форсунку газа.

Слева- неработающая горелка. Справа- как должно быть.
5. И пару слов о положении форсунки. Срез капилляра, из которого выходит газ, нужно подобрать его положение уже при работающей горелке в районе напротив отверстий для забора воздуха, или до этих отверстий. И, конечно, трубка с капилляром не должна перекрывать воздушные отверстия.

Инжекционными называются горелки, в которых образо­вание газовоздушной смеси происходит за счет энергии струи газа, подсасывающей воздух из окружающего пространства внутрь горелки. У инжекционных горелок низкого давления к фронту горения поступает только часть необходимого для сго­рания воздуха (первичный воздух). Остальной воздух (вторич­ный) поступает к пламени из окружающего пространства.

Р ис. 15. Инжекционная горелка низкого давления

Так как такие горелки инжектируют не весь необходимый для го­рения воздух, их еще называют горелками с неполной инжекцией воздуха. Первичный воздух составляет в таких горелках 40-60% воздуха, необходимого для горения.

Основными частями инжекционных горелок являются ре­гулятор первичного воздуха, сопло, смеситель и коллектор (рис. 15).

Регулятор первичного воздуха представляет собой вращаю­щийся диск, который может перемещаться «от горелки - к горелке». Он регулирует количество первичного воздуха, посту­пающего в горелку. Сопло служит для придания газовой струе скорости, которая обеспечивает подсос необходимого воздуха. В смесителе горелки происходит перемешивание газа и возду­ха. Из смесителя газовоздушная смесь поступает в коллектор, который и распределяет газовоздушную смесь по выходным отверстиям. Форма коллектора и расположение отверстий за­висит от типа горелок и их назначения.

Инжекционные горелки низкого давления имеют ряд поло­жительных качеств, благодаря которым широко применяются в бытовых газовых приборах.

Преимущества инжекционных горелок низкого давления :

Простота конструкции;

Устойчивая работа горелки при изменении нагрузки;

Возможность полного сжигания газа;

Отсутствие подачи воздуха под давлением.

Рис. 16. Горелка плиты

На рис. 16 изображена горелка стола плиты. Газ выходит из сопла и попадает в смеситель, где происходит образование газовоздушной смеси. Горелка не имеет регулятора подачи первичного воздуха. При увеличении давления газа в сети за пределы устойчивой работы горелки возможен частичный от­рыв. В этом случае необходимо уменьшать подачу газа на го­релку с помощью крана горелки. Насадок горелки свободно устанавливается на смеситель. В крышке имеются выходные отверстия, через которые выходит газовоздушная смесь. Го­релка изготавливается из алюминиевых сплавов.



К достоинствам инжекционных горелок относится их свойс­тво саморегулирования , т.е. поддержание постоянной про­порции между количеством подаваемого в горелку газа и ко­личеством инжектируемого воздуха. При увеличении давления увеличивается количество воздуха, поступающего в горелку, при уменьшении - уменьшается. Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени: увеличивать и уменьшать давление газа пе­ред горелкой можно лишь в определенных пределах.

Вопросы для повторения

1. Какие вещества образуются при полном сгорании при­родного газа?

2. Каковы причины неполного сгорания газа?

3. Что такое отрыв?

4. В чем причины отрыва?

5. Что такое проскок?

6. В чем причины проскока?

7. Какие горелки называют инжекционными?

8. Опишите конструкцию инжекционной горелки низкого давления.

9. Каковы достоинства инжекционных горелок?

Оборудование

Газовые плиты

Большую часть бытового газоиспользующего оборудова­ния в России составляют газовые плиты, в эксплуатации их бо­лее 40 млн. штук.

Газовая плита

Бытовые плиты предназначены для приготовления пищи. Использование их в других целях, в частности, для отопления помещений, не допускается. Плиты могут работать:

На природном газе номинальным давлением 130 мм в.ст. или 200 мм в.ст.;

На сжиженном углеводородном газе номинальным дав­лением 300 мм в.ст.

Для перевода плиты с газа одного вида или давления на газ другого вида (давления) необходимо заменить сопла горелок. На соплах должна быть маркировка с указанием размера от­верстия.

Плита изготавливается в виде тумбы (рис. 17), в которую вмонтированы духовой шкаф и вспомогательный шкаф, где допускается хранить только негорючие предметы.

В верхней части плиты расположен столс варочными го­релками. Посуда устанавливается на решетку стола, которая должна быть съемной и фиксироваться на столе.

Горелки стола могут иметь различную конструкцию, но по принципу действия все они являются инжекционными горелка­ми низкого давления.

На современных четырехгорелочных плитах горелки стола бывают трех мощностей: пониженной, нормальной (2 шт.) и повышенной.

Чтобы добраться до газопровода плиты - рампы, необхо­димо снять стол и распределительный щиток. Рампа изготав­ливается из стальной трубы, чаще всего условным проходом D y 15 (полдюйма). На рампе установлены краны горелок. Краны плиты - конусные, прижатие пробки к корпусу обеспечи­вается пружиной (рис. 18).

Рис. 18. Кран плиты

Кран должен фиксироваться в закрытом положении. От­крытие крана должно проводиться после выведения крана из фиксированного положения. Из всего газоиспользующего оборудования краны плиты работают в наиболее тяжелых ус­ловиях, так как они располагаются непосредственно над ду­ховым шкафом. Краны плиты при включенной духовке могут нагреваться до 145°С.

Смазка кранов должна быть тугоплав­кой и обеспечивать их работу в течение 3 лет. Стержень крана удерживается с помощью стопорного винта. На стержень наде­вается ручка крана.

Ручки кранов современных плит должны иметь индикацию, чтобы по их положению можно было определить одно из трех положений крана: «Закрыто», «Большое пламя» или «Малое пламя». Краны поворачиваются из закрытого положения в от­крытое против часовой стрелки.

Духовой шкаф современных плит имеет теплоизоляцию из минваты, закрытую сверху алюминиевой фольгой. В духовом шкафу имеется основная горелка (самая мощная горелка пли­ты), а также может быть жарочная горелка (гриль). Одновре­менная подача газа на основную и жарочную горелки не до­пускается. При горении основной горелки продукты сгорания поднимаются вверх, что не позволит нормально гореть распо­ложенной сверху жарочной горелке. Она либо потухнет, ли­бо будет гореть с неполным сгоранием газа. Чтобы избежать одновременной подачи газа на основную и жарочную горел­ки, кран для этих горелок делают общим. При повороте крана против часовой стрелки газ идет на основную горелку, по ча­совой - на жарочную.

Жарочная горелка - инжекционная низкого давления . Что­бы тепло от нее шло вниз, ее делают горелкой инфракрасно­го излучения. От пламени горелки разогревается до свечения металлическая панель либо сетка, инфракрасное излучение без потерь идет через воздух вниз и обжаривает продукты. Допус­кается одновременная работа горелок духовки и горелок сто­ла. При этом горелки стола должны работать без отрыва и проскока пламени.

Дверка духовки должна фиксироваться в открытом и за­крытом положении. Стекло дверки духовки - жаростойкое каленое. Противни и решетки в духовке должны свободно пе­ремещаться и не выпадать из направляющих в холодном и на­гретом состоянии.

Существует группа бытовых плит, у которых горелки сто­ла - газовые, а в духовом шкафу установлены электрические нагреватели - ТЭНы. Один ТЭН устанавливается внизу, дру­гой - вверху. Электрическая духовка обеспечивает лучшее качество выпечки по сравнению с газовой, так как возможна одновременная работа двух ТЭНов. Это обеспечивает более равномерную подачу тепла к выпекаемому изделию. Основная горелка газовой духовки большую часть тепла к выпекаемому изделию подает снизу, поэтому выпечка довольно часто пригорает.

Современные плиты все чаще оборудуют устройствами, ко­торые повышают удобство и безопасность ее использования. Это электророзжиг горелок, автоматика «Газ-контроль», элек­тропривод вертела, терморегулятор духовки.

Электророзжиг горелки происходит при проскоке искры между насадкой горелки и установленным рядом разрядником (рис. 19).

Рис. 19. Схема электророзжига

Чтобы искра могла пробить воздух между разрядником и насадкой горелки, в плите имеется умножитель напряжения (УН), который повышает напряжение до нескольких тысяч вольт. Электророзжиг бывает одноискровый, когда после каждого нажатия кнопки проскакивает искра, и многоискровый, когда искры проскакивают через определенные промежутки времени все время, пока нажата кнопка розжига. Многоискро­вый розжиг реже выходит из строя.

Особенно важна качественная работа электророзжига ос­новной горелки духовки. Во-первых, горелка духовки - самая мощная, поэтому через ее сопло выходит большое количество газа. Во-вторых, над горелкой устанавливается лист, в резуль­тате создается замкнутый объем (одно из условий взрыва). Ес­ли розжиг не происходит в течение нескольких секунд, возможен взрыв.

Нельзя производить электророзжиг горелок духов­ки при закрытой дверце духовки.

Устройство для контроля пламени (автоматика «Газ-конт­роль») должно прекращать подачу газа к горелке при ее поту­хании. Как показывает опыт работы аварийно-диспетчерской службы, довольно часто причиной загазованности в кухне бы­вает выход газа через не горящие горелки плиты. Это может произойти при неправильном розжиге, когда открывают газ к одной горелке, а поджечь пытаются другую, при выплескива­нии из посуды кипящей воды, при задувании небольшого пла­мени сквозняком и т. п.

Автоматика «Газ-контроль» состоит из термопары и элек­тромагнитного клапана. При нажатии на ручку крана клапан открывается, газ поступает к горелке, где его поджигают. От пламени горелки разогревается термопара. Она начинает вы­рабатывать напряжение, которое поступает на электромагнит, который удерживает клапан в открытом положении. Время разогрева термопары - 3-5 секунд, после этого ручку крана можно отпустить. Если горелка по какой-либо причине погас­нет, термопара остынет и перестанет вырабатывать напряже­ние. Электромагнит отпустит клапан, подача газа к горелке прекратится.

Электропривод вертела устанавливается на задней стенке духовки. Он состоит из электромотора и механического редук­тора, понижающего число оборотов.

Терморегулятор духовки поддерживает заданную темпера­туру в духовом шкафу при работе основной горелки. Напро­тив ручки крана основной горелки на распределительном щит­ке имеются цифры. Каждой цифре соответствует та темпера­тура в духовом шкафу, которую будет поддерживать основная горелка. При уменьшении температуры подача газа на горелку увеличивается, и температура поднимается. Если температура растет сверх настроенной величины, подача газа уменьшается. Терморегулятор состоит из термобаллона, капиллярной труб­ки и мембраны. Термобаллон находится в духовом шкафу и соединен капиллярной трубкой с мембраной, которая управ­ляет клапаном в кране. Вся система наполнена специальной жидкостью. При нагреве термобаллона жидкость расширяет­ся, ее давление передается по трубке к мембране. Мембрана придвигает клапан к седлу, подача газа уменьшается.

Если духовка не имеет терморегулятора, в ней устанавлива­ется термоуказатель, который работает, в диапазоне темпера­тур 160-270°С. Термоуказатель имеет шкалу с цифрами. По­ложение стрелки напротив той или иной цифры соответствует определенной температуре в духовке. В паспорте на плиту име­ется таблица, в которой обозначено, какая температура соот­ветствует той или иной цифре термоуказателя.

Электрооборудование плиты работает от переменного тока напряжением 220 В частотой 50Гц. Существуют плиты, элект­рооборудование которых работает от автономного источника постоянного тока (аккумулятор, батареи) напряжением от 1,5 до 12 В.

Средний срок службы современной плиты-не менее 14 лет. Плита не подлежит ремонту в том случае, если у нее прогорела духовка.

Неисправности плит

Пробка крана туго поворачивается - кран необходимо сма­зать специальной смазкой - НК-50, ГАЗ-41 и т.п. Не допуска­ется применение солидола, технического вазелина и подобных смазок. Качество крана зависит от того, насколько хорошо пробка притерта к корпусу. Пробка каждого крана притирает­ся к корпусу индивидуально. При смазке крана важно следить, чтобы отверстия в пробке и корпусе не забивались, их необхо­димо периодически прочищать.

Отрыв пламени горелок - при возможности регулирования подачи первичного воздуха - отрегулировать, в остальных случаях - уменьшить подачу газа на горелку краном.

Утечки в соединениях. В конструкции плиты имеется мно­жество разъемных соединений. При изменении свойств уплотнительных материалов (высыхании, старении) в них появляют­ся утечки, которые устраняют, применяя разрешенные матери­алы - лен, ленту ФУМ, паронит и т. п.

Розжиг горелок плиты

Розжиг горелок описан в данном разделе в объеме инструк­тажа, то есть так, как его необходимо объяснить абоненту при первичном пуске газа:

Убедиться в отсутствии запаха газа;

Открыть форточку;

Проверить тягу в вентканале;

Убедиться, что краны на плите закрыты;

Открыть кран на опуске;

Поднести зажженную спичку к разжигаемой горелке, от­крыть кран горелки;

Отрегулировать горение, убедиться в устойчивой работе горелок;

Не оставлять работающую плиту без присмотра;

По окончании пользования закрыть краны на плите и кран на опуске.

Проточные водонагреватели

Колонки предназначены для горячего водоснабжения - нагрева воды, используемой в санитарных целях: стирка, купа­ние, мытье посуды и т.п.

Основными узлами колонки являются (рис. 20):

Газоотвод;

Теплообменник (радиатор);

Основная горелка;

Автоматика безопасности.

Рис. 20. Колонка

Газоотвод служит для удаления продуктов сгорания в дымоотводящий патрубок прибора. Колонки устанавливаются с отводом продуктов сгорания в дымоход. Площадь сечения ды­мохода должна быть не меньше площади сечения дымоотводящего патрубка колонки.

Теплообменник служит для нагрева продуктами сгорания протекающей через него воды. Он состоит из калорифера и огневой камеры («рубашки»), опоясанной змеевиком. Кало­рифер - это система медных трубок, на которые насажены и припаяны медные пластины. Применение меди обусловлено ее химической стойкостью и высокой теплопроводностью. В пос­леднее время появились колонки, имеющие биметаллический теплообменник. Это медная трубка, оребрение которой вы­полнено стальной пластиной.

Основная горелка колонки - инжекционная низкого давле­ния. Она имеет большую мощность для того, чтобы прогреть проточную воду, особенно зимой, за то небольшое время, пока вода идет через радиатор.

Автоматика безопасности колонки контролирует :

Проток воды;

Пламя запальника (или основной горелки);

Тягу в дымоходе;

Повышение температуры воды сверх установленной (не на всех колонках).

Автоматика по протоку воды - блок-кран - состоит из двух частей - газовой и водяной. Это наиболее сложный узел колонки. Блок-кран обеспечивает подачу газа к основной го­релке при открытии водозабора (наличии протока воды) и отключение основной горелки при прекращении водозабора (отсутствии протока). Кроме того, блок-кран блокирует ос­новную горелку при розжиге запальника: сначала зажигает­ся запальник и только потом основная горелка. В блок-кране имеется конусный кран, который обеспечивает ручное регули­рование подачи газа на основную горелку.

Запальник - это инжекционная горелка низкого давле­ния малой мощности (на современных колонках - не более 350 Вт). Запальная горелка выполняет две функции:

Разжигает основную горелку;

Обеспечивает работу автоматики.

Автоматика безопасности по пламени на современных ко­лонках может быть двух видов. В первом случае она состоит из термопары и электромагнитного клапана. При погасании за­пальника она прекращает подачу газа на основную горелку и запальник. Во втором случае контроль пламени производится датчиком ионизации, который может следить за пламенем за­пальника или основной горелки. При отсутствии пламени за­крывается электромагнитный клапан на входе газа в колонку.

Автоматика по тяге должна прекращать подачу газа на ос­новную горелку и запальник при отсутствии тяги в дымохо­де. Время срабатывания - не меньше 10 секунд, но не больше 60 секунд.

Автоматика по максимальной температуре воды отключает основную горелку и запальник при нагреве воды сверх опре­деленной температуры. Она защищает радиатор от перегрева , при котором он выходит из строя (температура срабатыва­ния - 90-95°С), либо от образования накипи в теплообмен­нике. В этом случае температура срабатывания - около 80°С. Автоматика по максимальной температуре воды имеется толь­ко на современных колонках. Наиболее современные модели колонок имеют автоматику, которая изменяет подачу газа на горелку в зависимости от протока воды через колонку.

Средний срок службы современных колонок - не менее 12 лет.

Колонка КГИ-56

Колонка КГИ-56 давно снята с производства, но в эксплу­атации находится достаточно большое количество этих аппа­ратов. Простота конструкции, надежность, наличие запасных частей приводят к тому, что КГИ-56 еще долго будет нахо­диться в эксплуатации. Колонка КГИ-56 имеет следующие тех­нические характеристики:

давление воды - 0,5-6 кгс/см 2 ;

расход воды - 7-10 л/мин.

Теплообменник (радиатор ) КГИ-56 имеет высокую огне­вую камеру, опоясанную змеевиком, который припаивается к «рубашке».

Горелка КГИ-56 - односопловая, что и обусло­вило высокую огневую камеру радиатора, так как происходит не очень хорошее смешивание газа с первичным воздухом.

Рис. 21. Схема термоклапана

На горелке установлена автоматика по пламени (термоклапан), которая состоит из биметаллической пластины, на которой подвешен клапан, и запальника (рис. 21). При нагревании биметаллической пластины запальником она сгибается, и клапан открывает проход газа на горелку. При погасании запальника пластина остывает, выпрямляется, и клапан перекрывает проход газа на основную горелку.

Блок-кран состоит из газовой и водяной частей, которые крепятся друг к другу тремя винтами (рис. 22). Блок-кран обес­печивает подачу газа на основную горелку при наличии водо­забора и ее отключение при прекращении водозабора (автома­тика по протоку воды).

Рис. 22. Блок-кран КГИ-56

В газовой части имеются два конусных крана: один регули­рует подачу газа на основную горелку, другой - на запальник. В кране на основной горелке устроен клапан, который откры­вает подачу газа под действием штока водяной части. На кла­пан давит малая пружина, большая пружина служит для фик­сации пробки в корпусе.

В водяной части между крышкой и корпусом зажата мембра­на, на которую опирается тарелочка со штоком. Холодная вода подводится к водяной части снизу. Через отверстие диаметром 3,3 мм давление холодной воды передается в подмембранное пространство водяной части блок-крана. Следовательно, давление под мембраной равно давлению воды в водопроводе.

Далее вода проходит через радиатор и возвращается в водяную часть. При этом нагретая вода передает давление через отверстие диа­метром 2 мм воде, заполняющей надмембранное пространство. Это давление при протоке воды через колонку всегда будет меньше того, которое давит на мембрану снизу, за счет разности в диаметрах отверстий в под- и надмембранное пространство и потерь из-за трения. Мембрана выгибается вверх, выталкивая при этом тарелочку со штоком. Шток приподнимает клапан над седлом пробки газовой части блок-крана, преодолевая при этом действие на клапан сверху малой пружины и открывая проход газа из внутренней полости пробки на горелку. При прекраще­нии протока воды давление под мембраной и над мембраной выравнивается, мембрана перестает поднимать шток. Клапан под действием малой пружины закроет проход газа.

Горелки, в которых образование газовоздушной смеси происходит за счет энергии струи газа, называют инжекционными . Основной элемент инжекционной горелки - инжектор, подсасывающий воздух из окружающего пространства внутрь горелок.

В зависимости от количества инжектируемого воздуха горелки могут быть с неполной инжекцией воздуха и с полным предварительным смешением газа с воздухом.

Горелки с неполной инжекцией воздуха. К фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают при низком давлении газа. Их называют инжекционными горелками низкого давления (рис. 3, а).

Основными частями инжекционных горелок являются регулятор первичного воздуха, форсунка, смеситель и коллектор (см. рис. 3).


Рис. 3. Инжекционные атмосферные газовые горелки:

а - низкого давления; б - горелка для чугунного котла; 1 - форсунка; 2 - инжектор; 3 - конфузор; 4 - диффузор; 5 - коллектор; 6 - отверстия; 7 - регулятор первичного воздуха

Регулятор первичного воздуха 7 представляет собой вращающийся диск или шайбу и регулирует количество первичного воздуха, поступающего в горелку. Форсунка 1 служит для превращения потенциальной энергии давления газа в кинетическую, т. е. для придания газовой струе такой скорости, которая обеспечивает подсос необходимого воздуха. Смеситель горелки состоит из трех частей: инжектора, конфузора и диффузора. Инжектор 2 создает разрежение и подсос воздуха. Самая узкая часть смесителя - конфузор 3, выравнивающий струю газовоздушной смеси. В диффузоре 4 происходят окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Из диффузора газовоздушная смесь поступает в коллектор 5, который и распределяет ее по отверстиям 6. Форма коллектора и расположение отверстий зависят от типа горелок и их назначения.

Распределительный коллектор горелок емкостных водонагревателей имеет форму окружности; у горелок проточных водонагревателей коллектор состоит из параллельно расположенных трубок; у агрегатов, имеющих удлиненную топку, коллектор удлиненной формы; у горелок для чугунного котла (рис. 3, б) коллектор в виде прямоугольника с большим числом мелких отверстий.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Инжекционные горелки используют также в чугунных отопительных котлах.

Основные преимущества инжекционных горелок низкого давления: простота конструкции, устойчивая работа горелок при изменении нагрузок; надежность и простота обслуживания; бесшумность работы; возможность полного сжигания газа и работа на низких давлениях газа; отсутствие подачи воздуха под давлением.

Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции - отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м3 газа необходимо 10 м3 воздуха, а первичный воздух составляет 4 м3, то коэффициент инжекции равен 4: 10 = 0,4.

Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м3 сжигаемого газа инжектируется 4 м3 воздуха, кратность инжекции равна 4.

Достоинство инжекционных горелок - это их свойство саморегулирования, т.е. поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

Горелки с полным предварительным смешением газа с воздухом . Инжекция всего воздуха, необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт. Основные трудности повышения их мощности - сложность борьбы с проскоком пламени и громоздкость смесителей.

Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел, которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей используют огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.

Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и огнеупорными насадками.

Инжекционная горелка конструкции Казанцева (ИГК) состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора (рис. 4).


Рис. 4. Инжекционная горелка ИГК:

1 - стабилизатор; 2 - насадок; 3 - конфузор; 4 - форсунка; 5 - регулятор первичного воздуха

Регулятор первичного воздуха 5 горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор и проскока пламени в широком диапазоне 7 обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь.

В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной. В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.

Газовоздушная смесь у этих горелок приготовляется с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не вы ходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется.

Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси. На рис. 5 показана беспламенная панельная горелка. Поступающий в сопло 5 из газопровода 7 газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха 6. Образовавшаяся газовоздушная смесь через инжектор 4 поступает в распределительную камеру 3, проходит по ниппелям 2 и поступает в керамические тоннели 1. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера 3 от керамических призм 8 теплоизолирована слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.

Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.

Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.


Рис. 5. Беспламенная панельная горелка:

1 - тоннель; 2 - ниппель; 3 - распределительная камера; 4 - инжектор; 5 - сопло; 6 - регулятор воздуха; 7 - газопровод; 8 - керамические призмы

Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плиток размером 65 х 45 х 12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.

Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. При излучении тепловая энергия веществ превращается в энергию электромагнитных волн, которые распространяются от источника со скоростью, равной скорости света. Эти электромагнитные волны, распространяясь в окружающем пространстве, наталкиваются на различные предметы и легко превращаются в тепловую энергию. Величина ее зависит от температуры излучающих тел. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения (рис. 6).

Через сопло 4 (см. рис. 6, а) газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру 6 и далее направляется в огневые отверстия керамической плитки 2. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени. В дальнейшем скорость вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000°С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.


Рис. 6. Горелки инфракрасного излучения:

а - схема горелки: 1 - рефлектор; 2 - керамическая плитка; 3 - смеситель; 4 - сопло; 5 - корпус; 6 - сборная камера; б, в и г - соответственно горелки ГИИ-1, ГИИ-8 и ПС-1-38

Керамические плитки имеют около 600 огневых цилиндрических каналов, что составляет около 40 % поверхности плиток.

Плитки соединяют друг с другом специальной замазкой, состоящей из смеси шамотного порошка с цементом.

Если инфракрасные горелки работают на газе среднего давления, то применяют специальные плиты из пористых жаропрочных материалов. Вместо цилиндрических каналов у них узкие искривленные каналы, которые заканчиваются расширяющимися камерами сгорания.

При сжигании газа в многочисленных каналах различных насадок происходит нагрев их внешних поверхностей до температуры около 1000 °С. В результате поверхности приобретают оранжево-красный цвет и становятся источниками инфракрасных лучей, которые поглощаются различными предметами и вызывают их нагрев.

На рис. 6, б... г показаны наиболее распространенные типы инфракрасных горелок. У горелок ГИИ-1 имеются 21 керамическая плитка, рефлектор и распределительная коробка. С помощью горелок ГИИ можно обогревать помещения и различное оборудование. Горелки используют и для обогрева открытых площадок (спортивные площадки, кафе, помещения летнего типа и т.д.).

Горелку ГК-1-38 успешно применяют для подогрева строящихся стен и штукатурки, обогрева людей, работающих в зимних условиях. Горелка может работать на природном и сжиженном газах.