Все о печах и каминах - Информационный портал

Модели стационарных случайных временных рядов. Шпаргалка: Модели стационарных временных рядов и их индефикация

Набор случайных переменных X(t) , где (вещественные числа) называется стохастическим процессом . Дискретный стохастический процесс определяется как последовательность случайных переменных X(t) , где t = t 1 , t 2 , ..., t T или короче Х 1 , Х 2 ,..., Х Т..., или просто X t .

Математическое ожидание E(X t) может изменяться во времени и представляет собой функцию среднего в зависимости от времени

.

Аналогичным образом дисперсия (X t) является функцией, также зависящей от времени:

В общем случае в каждый момент времени существует определенная дисперсия. Это не то же самое, что изменчивость эмпирических данных по мере развития процесса во времени.

Автоковариация

в общем виде зависит от каждого t 1 и t 2 .

Конечная реализация x 1 , х 2 ,..., х т дискретного стохастического процесса... Х 1 , Х 2 ,... Х т... называется временным рядом.

Рассмотрим различие между стохастическим процессом и сгенерированным им временным рядом.

Процессы обозначаются прописными буквами, обозначают временные ряды строчными буквами. Исключениями являются остатки в моделях стохастических процессов, не имеющие никакой самостоятельной практической значимости. Они также обозначаются строчными буквами, например а, и и ε. Строгое разграничение необходимо для корректного вывода свойств временных рядов из свойств стохастических процессов. Позднее при моделировании реальных временных рядов это условие можно будет ослабить или опустить.

Стохастический процесс X t называется стационарным в сильном смысле, если совместное распределение вероятностей всех переменных точно то же самое, что и для переменных .

Под стационарным процессом в слабом смысле понимается стохастический процесс, для которого среднее и дисперсия независимо от рассматриваемого периода времени имеют постоянное значение, а автоковариация зависит только от длины лага между рассматриваемыми переменными.

Среднее ……………. .

Дисперсия …………. .

Автоковариация …… ,

где (лаг).

Автоковариация как функция длины лага τ

называется автоковариационной функцией. При τ = 0 ее значение равно дисперсии.



Проведя нормировку , получим автокорреляционную функцию стационарного стохастического процесса:

Временной ряд х 1 , х 2 , ..., х Т, т. е. конкретная реализация стационарного стохастического процесса X t также называется стационарным.

В практической аналитической работе стационарность временного ряда означает отсутствие:

Систематических изменений дисперсии;

Строго периодичных флуктуаций;

Систематически изменяющихся взаимозависимостей между элементами временного ряда.

Экономические временные ряды представляют собой данные наблюдений за экономическими показателями, например, валовым внутренним продуктом, за ряд лет, и такие ряды, как правило, нестационарны.

Графическое представление стационарного ряда

Эргодичность

Основная проблема в оценивании параметров распределения стохастического процесса состоит в том, что в общем случае размер выборки n = 1, поскольку обычно имеется единственная реализация процесса. Ввиду этого сделать осмысленную оценку практически невозможно. Изучаемый стохастический процесс как таковой неизвестен. Его стационарность или нестационарность может быть установлена только посредством анализа соответствующего ему временного ряда. Но, с другой стороны, многие методы анализа временных рядов предполагают их стационарность. Это приводит к своего рода замкнутому кругу, когда свойство, на наличие которого проводится исследование, входит в изначальные предпосылки.

Данную проблему можно решить с использованием понятия эргодичность : это поведение большого класса стационарных процессов, когда арифметическое среднее со временем сходится к математическому ожиданию μ. Эргодичность делает возможным оценивание стохастического процесса только по его реализации - временному ряду.

Известны различные подходы к распознаванию стационарности временных рядов:

· графическое представление временного ряда и визуальная проверка на наличие какого-либо тренда, т.е. меняющегося среднего, увеличивающейся или уменьшающейся дисперсии, устойчивых периодичностей;

· исследование на наличие автокорреляции в реальных данных;

· тесты на присутствие детерминистического тренда, например t - тест на коэффициенты оценок метода наименьших квадратов;

· тесты на наличие стохастического тренда, например тесты на единичный корень.

Особые случаи

Процесс называется нормальным , если совместное распределение X t1 , X t2 ,..., X t n - это n-мерное нормальное распределение. В данном случае из стационарности в слабом смысле следует стационарность в сильном смысле.

«Белым шумом» называется чисто случайный процесс, т.е. ряд независимых, одинаково распределенных случайных величин a t (iid) . Главные свойства «белого шума» следующие:

Из этого очевидным образом следует стационарность. «Белый шум» играет важную роль при моделировании остатков или шоков стохастического процесса, генерирующего данные (временной ряд).

Для того чтобы проверить, является ли временной ряд x t «белым шумом», можно протестировать его выборочную автокорреляцию с помощью Q-статистики Бокса - Пирса:

При нулевой гипотезе о том, что X t - «белый шум» Q-статистика имеет -распределение с р степенями свободы.

Достаточно часто экономические показатели, представленные в виде временного ряда, имеют сложную структуру. Моделирование таких рядов путем построения модели тренда, сезонности и периодической составляющей не приводит к удовлетворительным результатам. Ряд остатков часто имеет статистические закономерности. Наиболее распространенными моделями стационарных рядов являются модели авторегрессии и модели скользящего среднего.

Будем рассматривать класс стационарных временных рядов. Задача состоит в построении модели остатков временного ряда u t и прогнозирования его значений.

Авторегрессионная модель предназначена для описания стационарных временных рядов. Стационарный процесс удовлетворяет уравнению авторегрессии бесконечного порядка с достаточно быстро убывающими коэффициентами. В частности поэтому авторегрессионная модель достаточно высокого порядка может хорошо аппроксимировать почти любой стационарный процесс. В связи с этим модель авторегрессии часто применяется для моделирования остатков в той или иной параметрической модели, например регрессионной модели или модели тренда.

Марковскими называются процессы, в которых состояние объекта в каждый следующий момент времени определяется только состоянием в настоящий момент и не зависит от того, каким путем объект достиг этого состояния. В терминах корреляционного анализа для временных рядов марковский процесс можно описать следующим образом: существует статистически значимая корреляционная связь исходного ряда с рядом, сдвинутым на один временной интервал, и отсутствует с рядами, сдвинутыми на два, три и т. д. временных интервала. В идеальном случае эти коэффициенты корреляции равны нулю.

u (t )=m u (t -1)+e (t ) , (5.1)

где m - числовой коэффициент |m |<1, e (t ) – последовательность случайных величин, образующих «белый шум» (E(e (t ))=0, E(e (t )e (t +t))=).

Модель (5.1) называется также марковским процессом.

E (u (t ))º0. (5.2)

r (u (t )u (t ±t ))=m t . (5.3)

D u (t )=s 2 /(1-m 2). (5.4)

cov(u (t )u (t ±t))=m t D u (t ). (5.5)

Из (5.3) следует, что при |m | близком к единице дисперсия u (t ) будет намного больше дисперсии e t . Это значит (учитывая (5.2) m =r (u (t )u (t ±1))=r (1), т.е. параметр m может быть интерпретирован как значение автокорреляции первого порядка), что в случае сильной корреляции соседних значений ряда u (t ) ряд слабых возмущений e t будет порождать размашистые колебания остатков u (t ).

Условие стационарности ряда (5.1) определяется требованием |m |<1.


Автокорреляционная функция (АКФ) r (t ) марковского процесса определяется соотношением (5.3).

Частная автокорреляционная функция

r част (t )=r (u (t )u (t +t )) | u (t+ 1)=u (t+ 2)=…=u (t+t -1)=0

может быть вычислена по формуле: r част (2)=(r (2)-r 2 (1))/(1-r 2 (1)). Для второго и выше порядков (см. , с. 413, 414) должно быть r част (t )=0 "t =2,3,… . Это удобно использовать для подбора модели (5.1): если вычисленные по оцененным невязкам u (t )=y t -выборочные частные корреляции статистически незначимо отличаются от нуля при t =2,3,…, то использование модели AR (1) для описания случайных остатков не противоречит исходным данным.

Идентификация модели. Требуется статистически оценить параметры m и s 2 модели (5.1) по имеющимся значениям исходного ряда y t .

Можно сформулировать цели статистического анализа временного ряда следующим образом:

по имеющейся траектории x(1), x(2), …x(N) анализируемого временного ряда x(t) требуется:

1) определить, какие из неслучайных функций (соответствующих трендовому, сезонному и циклическому компонентам) при­сутствуют в разложении , т. е. определить значения индика­торов  i в разложении

2) построить «хорошие» оценки для тех неслучайных функций, которые присутствуют в разложении;

3) подобрать модель, адекватно описывающую поведение «случай­ных остатков u(t), и статистически оценить параметры этой модели.

Успешное решение перечисленных задач является основой для достиже­ния конечных прикладных целей исследования и, в первую очередь, для решения задачи кратко- и среднесрочного прогноза значений временного ряда.

Автоковариационная и автокорреляционная функции

Для идентификации временных рядов удобно использовать специальные функции: автоковариационную и автокорреляционную.

Автоковариационная функция

Из предположения о строгой стационарности временного ряда x(t) ковариация между значениями x(t) и x(t  ) будет зависеть только от величины «сдвига по времени»  (и не будет зависеть от t). Эта ковариация называется автоковариацией (поскольку измеряет ковариацию для различных значений одного и того же временного ряда x(t) и определяется соотношением:

При анализе величины () в зависимости от значения  принято говорить об автоковариационной функции (). Значения автоковариационной функции могут быть статистически оценены по имеющимся наблюдениям временного ряда по формуле

, где =1,2, … N-1. Очевидно

(0)=  2 =М;

()=cov(x(t+), x(t)) = cov(x(t), x(t+)) = cov(x(t), x(t-));

()= cov(x(t), x(t-))= (-).

Автокорреляционная функция

Одно из главных отличий последовательности наблюдений, образующих временной ряд, от случайной выборки заключается в том, что члены временного ряда являются, вообще говоря, статистически взаимозависмыми. Степень тесноты статистической связи между двумя случайными величинами может быть измерена парным коэффициентом корреляции. Так что степень статистической связи между двумя наблюдениями временного ряда, «разнесенными» (по времени) на  единиц, определится величиной коэффициента корреляции

Коэффициент корреляции r() измеряет корреляцию, существующую между членами одного и того же временного ряда, поэтому его принято называть коэффициентом автокорреляции. При анализе изменения величиныr() в зависимости от значенияпринято говорить об автокорреляционной функцииr(). График автокорреляционной функции называют коррелограммой. Автокорреляционная функция, в отличие от автоковариационной, безразмерна. Ее значения могут колебаться в пределах от –1 до +1. Очевидно, чтоr() =r(-), а(0) =1.

Поиск модели, адекватно описывающей поведение случайных остат­ков u(t) анализируемого временного ряда x(t), производят, как правило, в рамках некоторого специального класса случайных временных последовательностей - класса стационар­ных временных рядов. На интуитивном уровне стационарность временно­го ряд а мы связываем с требованием, чтобы он имел постоянное сред­нее значение и колебался вокруг этого среднего с постоянной дисперсией . В некоторых случаях временные последовательности этого класса могут воспроизводить и поведение самого анализируемого временного ряда x(t).

Ряд x(t) называется строго стационар­ным (или стационарным в узком смысле), если совместное распреде­ление вероятностей m наблюдений x(t 1), x(t 2), …, x(t m) такое же, как и для m наблюдений x(t 1 +), x(t 2 +), …x(t m +), при любых m, t 1 , t 2 , …, t m и .

Другими словами, свойства строго стационарного временного ряда не меняются при изменении начала отсчета времени. В частности, при m= 1 из предположения о строгой стационарности временного ряда x(t) следует, что закон распределения вероятностей случайной величины x(t) не зависит от t, а значит, не зависят от t и все его основные числовые характеристики, в том числе: среднее значение М(x(t)) =  и дисперсия D(x(t))= М(x(t) –) 2 =  2 .

Очевидно, значение μ определяет постоянный уровень, относитель­но которого разбросаны значения анализируемого временного ряда x(t), а посто­янная величина  2 характеризует размах этого разброса. Поскольку закон распределения вероятностей случайной величины x(t) одинаков при всех t, то он сам и его основные числовые характеристики могут быть оценены по наблюдени­ям x(1), x(2), …x(N). В частности:

-оценка среднего значения,

- оценка дисперсии.

Под методами сглаживания временного ряда понимается выделение неслучайной составляющей . Предположим, что известен общий вид неслучайной составляющей F(t) для ряда x(t)=F(t,)+ u(t). Это может быть полином, ряд Фурье и т.д. Тогда возникает задача оценки параметров . В такой постановке задачи используются аналитические методы.

Если вид неслучайной составляющей неизвестен F(t), то используются алгоритмические методы. К таким методам относится метод скользящего среднего, лежащий в основе более сложных процедур сглаживания.

Глава 6. Эконометрика временных рядов

6.1. Модели стационарных и нестационарных временных рядов, их идентификация

Пусть Рассмотрим временной ряд X(t). Пусть сначала временной ряд принимает числовые значения. Это могут быть, например, цены на батон хлеба в соседнем магазине или курс обмена доллара на рубли в ближайшем обменном пункте. Обычно в поведении временного ряда выявляют две основные тенденции - тренд и периодические колебания.

При этом под трендом понимают зависимость от времени линейного, квадратичного или иного типа, которую выявляют тем или иным способом сглаживания (например, экспоненциального сглаживания) либо расчетным путем, в частности, с помощью метода наименьших квадратов. Другими словами, тренд - это очищенная от случайностей основная тенденция временного ряда.

Временной ряд обычно колеблется вокруг тренда, причем отклонения от тренда часто обнаруживают правильность. Часто это связано с естественной или назначенной периодичностью, например, сезонной или недельной, месячной или квартальной (например, в соответствии с графиками выплаты заплаты и уплаты налогов). Иногда наличие периодичности и тем более ее причины неясны, и задача эконометрика - выяснить, действительно ли имеется периодичность.

Элементарные методы оценки характеристик временных рядов обычно достаточно подробно рассматриваются в курсах "Общей теории статистики" (см., например, учебники ), поэтому нет необходимости подробно разбирать их здесь. (Впрочем, о некоторых современных методах оценивания длины периода и самой периодической составляющей речь пойдет ниже.)

Характеристики временных рядов . Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд X(t) рассматривается как случайный процесс (с дискретным временем) основными характеристиками являются математическое ожидание X(t) , т.е.

дисперсия X(t) , т.е.

и автокорреляционная функция временного ряда X(t)

т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда X(t) и X(s).

В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времени k , а потому и все перечисленные выше характеристики временного ряда не меняются со временем . В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности t-s . Временные ряды, не являющиеся стационарными, называются нестационарными.

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками. Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа, рассмотренных в главе 5, здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)

Далее, в главе 5 предполагалось, что погрешности независимы между собой. В терминах настоящей главы это означало бы, что автокорреляционная функция должна быть вырожденной - равняться 1 при равенстве аргументов и 0 при их неравенстве. Ясно, что для реальных временных рядов так бывает отнюдь не всегда. Если естественный ход изменений наблюдаемого процесса является достаточно быстрым по сравнению с интервалом между последовательными наблюдениями, то можно ожидать "затухания" автокорреляции" и получения практически независимых остатков, в противном случае остатки будут автокоррелированы.

Идентификация моделей. Под идентификацией моделей обычно понимают выявление их структуры и оценивание параметров. Поскольку структура - это тоже параметр, хотя и нечисловой (см. главу 8), то речь идет об одной из типовых задач эконометрики - оценивании параметров.

Проще всего задача оценивания решается для линейных (по параметрам) моделей с гомоскедастичными независимыми остатками. Восстановление зависимостей во временных рядах может быть проведено на основе методов наименьших квадратов и наименьших модулей, рассмотренных в главе 5 моделей линейной (по параметрам) регрессии. На случай временных рядов переносятся результаты, связанные с оцениванием необходимого набора регрессоров, в частности, легко получить предельное геометрическое распределение оценки степени тригонометрического полинома.

Однако на более общую ситуацию такого простого переноса сделать нельзя. Так, например, в случае временного ряда с гетероскедастичными и автокоррелированными остатками снова можно воспользоваться общим подходом метода наименьших квадратов, однако система уравнений метода наименьших квадратов и, естественно, ее решение будут иными. Формулы в терминах матричной алгебры, о которых упоминалось в главе 5, будут отличаться. Поэтому рассматриваемый метод называется "обобщенный метод наименьших квадратов (ОМНК)" (см., например, ).

Замечание. Как уже отмечалось в главе 5, простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо профессиональное владение матричной алгеброй. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений и непосредственно по временным рядам , в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники. Подчеркнем в очередной раз, что за каждой главой настоящей книги стоит большая область научных и прикладных исследований, вполне достойная того, чтобы посвятить ей много усилий. Однако из-за ограниченности объема книги мы вынуждены изложение сделать конспективным.

Предыдущая

Важное значение в анализе временных рядов имеют стационарные временные ряды, вероятностные свойства которых не изменяются во времени. Стационарные временные ряды применяются, в частности, при описании случайных составляющих анализируемых рядов.

Временной ряд y t (t= 1,2,…,n) называется строго стационарным (или стационарным в узком смысле), если совместное распределение вероятностей n наблюдений y 1 ,y­ 2 ,…..,y n такое же, как и n наблюдений y 1+ t ,y 2+ t ,....y n + t при любых n, t и t. Другими словами, свойства строго стационарных рядов y t не зависит от момента t, т.е. закон распределения и его числовые характеристики не зависят от t. Следовательно, математическое ожидание a y (t) = a, среднее квадратическое отклонение s у (t) = s могут быть оценены по наблюдениям y t (t= 1,2,…,n) по формулам:

(6.3)

Простейшим примером стационарного временного ряда , у которого математическое ожидание равно нулю, а ошибок e t некоррелированы , является «белый шум» . Следовательно, можно сказать, что возмущения (ошибки) e t в классической линейной регрессионной модели образуют белый шум , а в случае их нормального распределения – нормальный (гауссовский ) белый шум.

Степень тесноты связи между последовательностями наблюдений временного ряда y 1 ,y­ 2 ,…..,y n и y 1+ t ,y 2+ t ,....y n + t (сдвинутых относительно друг от друга на e единиц, или, как говорят, с лагом t) может быть определена с помощью коэффициента корреляции

(6.4)

ибо

Так как коэффициент r(t) измеряет корреляцию между членами одного и того же ряда, его называют коэффициентом автокорреляции , а зависимость r(t) – автокорреляционной функцией . В силу стационарности временного ряда y t (t= 1,2,…,n) автокорреляционная функция r(t) зависит только от лага t, причем корреляционная функция r(- t) = r(t) , т.е. при изучение r(t) можно ограничиться рассмотрением только положительных значений t.

Статистической оценкой r(t) является выборочный коэффициент автокорреляции r(t), определяемый по формуле коэффициента корреляции (3.20), в которой x i = y t , y i = y t + t , a n заменяется на n - t:

Функцию r(t) называют выборочной автокорреляционной функцией , а ее график - коррелограммой .

При расчете r(t) следует помнить, что с увеличением t число n - t пар наблюдений y t ,y t + t уменьшается, поэтому лаг t должен быть таким, чтобы число n - t было достаточным для определения r(t). Обычно ориентируются на соотношение t £ n/4.

Для стационарного временного ряда с увеличением лага t взаимосвязь членов временного ряда y t и y t + t ослабевает и автокорреляционная функция r(t) должна убывать (по абсолютной величине). В тоже время для ее выборочного (эмпирического) аналога r(t), особенно при небольшом числе пар наблюдений n - t , свойство монотонного убывания, (по абсолютной величине) при возрастании t может нарушаться.

Наряду с автокорреляционной функцией при исследовании стационарных временных рядов рассматривается частная автокорреляционная функция r част (t), где r част (t) есть частный коэффициент корреляции между членами временного ряда y t и y t + t при устранении (элиминировании) влияния промежуточных (между y t и y t + t) членов.

Статистической оценкой r част (t) является выборочная частная автокорреляционная r част (t) где r част (t) – выборочный частный коэффициент корреляции, определяемый по формуле (5.21) или (5.22).Например, выборочный частный коэффициент автокорреляции 1-го порядка между членами временного ряда y t и y t + t при устранении влияния y t +1 может быть вычислен по формулу (5.22):

Где r(1) , r (1,2) ,r(2) – выборочные коэффициенты автокорреляции между y t и y t +1 , y t +1 и y t +2 , y t и y t +2 , t = 1,….,n.

Пример 6.1. По данным табл. 6.1 для временного ряда y t найти среднее значение, среднее квадратическое отклонение, коэффициенты автокорреляции 1-го порядка.

Решение. Среднее значение временного ряда находим по формуле (6.2):

Дисперсию и среднее квадратическое отклонение можно вычислить по формуле (6.3), но в данном случае проще использовать соотношение

где

Найдем коэффициент автокорреляции r(t) временного ряда (для лага t = 1), т.е. коэффициент корреляции между последовательностями семи пар наблюдений y t и y t + t (t = 1,2….,7).