Все о печах и каминах - Информационный портал

Коэффициент вязкости. Коэффициент динамической вязкости

В течение года при сезонной смене температуры вязкость транспортируемой нефти изменяется (рис. 1.20). В случае повышения температуры нефти от t 1 до t 2 , вязкость нефти уменьшается. Это приводит к уменьшению гидравлического сопротивления трубопровода (H 2 Q 1).

Рассмотрим влияние изменения вязкости нефти на величину подпоров ПС. Предположим, что на всех станциях установлено одинаковое число однотипных насосов, подпор на головной перекачивающей станции h П, остаточный напор на конечном пункте h ОСТ. Примем для простоты, что нефтепровод состоит из одного эксплуатационного участка N Э =1, а число ПС составляет n (рис. 1.21).

Напор перекачивающей станции в зимний период составит

в летний период

, (1.59)

где H 1 , H 2 – суммарные потери напора в трубопроводе, соответственно в зимний и летний периоды.


Рис. 1.20. Совмещенная характеристика трубопровода и ПС

при изменении вязкости нефти



Рис. 1.21. Влияние сезонного изменения вязкости нефти

на величину подпоров перед ПС

Из начальной точки профиля трассы отложим в вертикальном масштабе значения H 1 и H 2 , затем вершины отрезков соединим прямыми с точкой z K +h ОСТ. Полученные линии соответствуют положению линий гидравлических уклонов в зимний i 1 и летний i 2 периоды.

Представим, что трасса трубопровода – восходящая прямая AB. Как видно из построений, при расстановке станций такая трасса будет разбита на равные участки длиной L/n. При этом линии гидравлических уклонов i 1 и i 2 пересекут линию AB в одних и тех же точках. Это говорит о том, что при монотонном профиле трассы нефтепровода изменение вязкости нефти не оказывает влияния на величину подпоров на входе промежуточных ПС.

В реальных условиях профиль трассы может быть сильно пересеченным, тогда расстояния между перекачивающими станциями будут неодинаковы (l 1 ¹l 2 ¹l 3 ¹l n). Рассмотрим изменение подпора перед ПС в этом случае.

Величину подпора DH C перед с-й ПС можно найти из уравнения баланса напоров

где a=m M ×a M и b=m M ×b M .

Значение расхода в выражении (1.61) определяется из уравнения баланса напоров нефтепровода в целом (1.37), что позволяет записать

. (1.62)

осле подстановки (1.62) в (1.61), получим

Как следует из выражения (1.63), от величины вязкости зависит только один сомножитель , так как .

Введем обозначения:

;

– среднее расстояние между перекачивающими станциями на участке до с-й ПС;

– среднее арифметическое расстояние между ПС;



С учетом принятых упрощений выражение (1.63) можно представить в виде

где
.

Величина F прямо пропорционально зависит от изменения вязкости нефти: при снижении вязкости уменьшается и величина F.

Если выполняется условие L ср < l ср(С) , то при уменьшении вязкости подпор на с-й ПС возрастает. В противном случае при L ср > l ср(С) подпор на с-й ПС снижается и может оказаться меньше допустимого значения DH min (рис. 1. 21). В случае расстановки ПС согласно гидравлическому расчету при минимальной температуре нефти (t 1 =t min , n 1 =n mах), необходимо проанали­зи­ровать работу каждого перегона в летний период.

В летнее время, если позволяет прочность трубы, можно увеличить подпор на ГПС включением дополнительного последовательно соединенного подпорного насоса.

1.10. Регулирование режимов работы нефтепровода

Режимы работы нефтепровода определяются подачей и напором насосов ПС в рассматриваемый момент времени, которые характеризуются условиями материального и энергетического баланса перекачивающих станций и трубопровода. Любое нарушение баланса приводит к изменению режима работы и обуславливает необходимость регулирования .

К основным факторам, влияющим на режимы работы системы «ПС – трубопровод», можно отнести следующие:

§ изменение реологических параметров нефти вследствие сезонного изменения температуры, а также влияния содержания воды, парафина, растворенного газа и т. п.;

§ технологические факторы – изменение параметров насосов, их включение и отключение, наличие запасов нефти или свободных емкостей и т. д.;

§ аварийные или ремонтные ситуации, вызванные поврежде­ниями на линейной части, отказами оборудования ПС, срабатываниями предельной защиты.

Некоторые из этих факторов действуют систематически, некоторые – периодически. Все это создает условия, при которых режимы работы системы «ПС – трубопровод» непрерывно изменяются во времени.

Из уравнения баланса напоров следует, что все методы регулирования можно условно разделить на две группы:

q методы, связанные с изменением параметров перекачивающих станций

§ изменение количества работающих насосов или схемы их соединения;

§ регулирование с помощью применения сменных роторов или обточенных рабочих колес;

§ регулирование изменением частоты вращения вала насоса;

q методы, связанные с изменением параметров трубопровода

§ дросселирование;

§ перепуск части жидкости во всасывающую линию (байпасирование).

Изменение количества работающих насосов. Этот метод применяется при необходимости изменения расхода в нефте­проводе. Однако результат зависит не только от схемы соединения насосов, но и вида характеристики трубопровода (рис. 1.22).


Рис. 1.22. Совмещенная характеристика трубопровода и ПС при регулировании изменением числа и схемы включения насосов

1 – характеристика насоса; 2 – напорная характеристика ПС при последовательном соединении насосов; 3 – напорная характеристика ПС при параллельном соединении насосов; 4, 5 – характеристика трубопровода; 6 – h-Q характеристика насоса при последовательном соединении; 7 – h-Q характеристика насоса при параллельном соединении

Рассмотрим в качестве примера параллельное и последовательное соединение двух одинаковых центробежных насосов при работе их на трубопровод с различным гидравлическим сопротивлением.

Как видно из графических построений (рис. 1.22), последо­вательное соединение насосов целесообразно при работе на трубопровод с крутой характеристикой. При этом насосы работают с большей, чем при параллельном соединении, подачей (Q B >Q C), а также с более высоким суммарным напором и коэффициентом полезного действия. Параллельное соединение насосов более предпочтительно при работе на трубопровод с пологой характеристикой (Q F >Q E , H F >H E , h F >h E).

Регулирование с помощью сменных роторов . Большинство современных магистральных насосов укомплектовано сменными роторами на пониженную подачу 0,5Q НОМ и 0,7Q НОМ. Кроме того насос НМ 10000-210 укомплектован сменным ротором на 1,25 Q НОМ.

Сменные роторы имеют частные характеристики (рис. 1.23).


Рис. 1.23. Характеристика насоса со сменными роторами

Применение сменных роторов является экономичным на начальной стадии эксплуатации нефтепровода, когда не все перекачивающие станции построены, и трубопровод не выведен на проектную мощность (поэтапный ввод нефтепровода в эксплуатацию). Эффект от установки сменных роторов можно получить и при длительном уменьшении объема перекачки.

Обточка рабочих колес по наружному диаметру широко применяется в трубопроводном транспорте нефти. В зависимости от величины коэффициента быстроходности n S обточку колес можно выполнять в следующих пределах: при 60< n S <120 допускается обрезка колес до 20%; при 120< n S <200 – до 15%; при n S =200¼300 – до 10%.

Пересчет характеристики насоса при обточке рабочего колеса выполняется по формулам подобия:

где Q З, H З и N З – подача, напор и потребляемая мощность, соответствующие заводскому диаметру рабочего колеса D З;

Q У, H У и N У – то же при уменьшенном диаметре рабочего колеса D У.

Способ регулирования за счет обточки рабочего колеса может быть эффективно использован при установившемся на длительное время режиме перекачки. Следует отметить, что уменьшение диаметра рабочего колеса сверх допустимых пределов приводит к нарушению нормальной гидродинамики потока в рабочих органах насоса и значительному снижению к. п. д.

Изменение частоты вращения вала насоса – прогрессивный и экономичный метод регулирования. Применение плавного регулирование частоты вращения роторов насосов на ПС магистральных нефтепроводов облегчает синхронизацию работы станций, позволяет полностью исключить обточку рабочих колес, применение сменных роторов, а также избежать гидравлических ударов в нефтепроводе. При этом сокращается время запуска и остановки насосных агрегатов. Однако, в силу технических причин, этот способ регулирования пока не нашел широкого распространения.

Метод изменения частоты вращения основан на теории подобия

(1.66)

где Q 1 , H 1 и N 2 – подача, напор и потребляемая мощность, соответствующая частоте вращения рабочего колеса n 1 ;

Q 2 , H 2 и N 2 – то же при частоте вращения рабочего колеса n 2 .

При уменьшении частоты вращения характеристика насоса изменится и рабочая точка сместится из положения А 1 в А 2 (рис. 1.24).


Рис. 1.24. Совмещенная характеристика нефтепровода и насоса при изменении частоты вращения вала

В соответствии с (1.66) при пересчете характеристик насоса с частоты вращения n 1 на частоту n 2 , получим следующие соотношения:

Изменение частоты вращения вала насоса возможно в следующих случаях:

§ применение двигателей с изменяемой частотой вращения;

§ установка на валу насосов муфт с регулируемым коэффициентом проскальзывания (гидравлических или электромагнитных);

§ применение преобразователей частоты тока при одновременном изменении напряжения питания электродвигателей.

Следует отметить, что изменять частоту вращения в широких пределах нельзя, так как при этом существенно уменьшается к. п. д. насосов.

Метод дросселирования на практике применяется сравнительно часто, хотя и не является экономичным. Он основан на частичном перекрытии потока нефти на выходе из насосной станции, то есть на введении дополнительного гидравлического сопротивления. При этом рабочая точка из положения А 1 смещается в сторону уменьшения расхода в точку А 2 (рис. 1.25).


Рис. 1.25. Совмещенная характеристика ПС и трубопровода при регулировании дросселированием и байпасированием

Целесообразность применения метода можно характеризовать величиной к. п. д. дросселирования h ДР

. (1.68)

С увеличением величины дросселируемого напора h ДР значение h ДР уменьшается. Полный к. п. д. насоса (ПС) определяется выражением h=h 2 ×h ДР. Метод дросселирования уместно применять для насосов, имеющих пологую напорную характеристику. При этом потери энергии на дросселирование не должны превышать 2% энергозатрат на перекачку.

Метод перепуска части жидкости во всасывающую линию насосов (байпасирование ) применяется в основном на головных станциях. При открытии задвижки на обводной линии (байпасе) напорный трубопровод соединяется с всасывающим, что приводит к уменьшению сопротивления после насоса и рабочая точка перемещается из положения А 1 в А 3 (рис. 1.25). Расход Q Б =Q 3 -Q 2 идет через байпас, а в магистраль поступает расход Q 2 .

Коэффициент полезного действия байпасирования составляет

. (1.69)

На практике байпасирование используется редко из-за неэкономичности. Метод регулирования байпасированием следует применять при крутопадающих характеристиках насосов. В этом случае он экономичнее дросселирования.

Изменение вязкости и всего комплекса вязкоупругих свойств в процессе синтеза полимера проявляется естественным следствием роста макромолекулярных цепей и увеличения их содержания в реакционной массе. Другими словами, в процессе образования полимера изменяются два основных фактора, определяющих реологические свойства полимерных растворов – молекулярная масса полимера М и его концентрация С в растворе. Однако характер изменения М и С во времени (или как функции степени превращения α , оцениваемой по содержанию мономера), существенно зависит от кинетической схемы процесса образования полимера.

Рассмотрим несколько простейших модельных случаев, в первом приближении отвечающих основным механизмам реакций образования полимеров.

1. Пусть полимеризация протекает по радикальному механизму. При этом на довольнозначительной начальной части процесса сохраняется постоянной начальная средняя степень полимеризации , а выход полимера линейно возрастает во времени. В терминах определяющих параметров это означает, что , а полимеризация состоит в линейном увеличении концентрации во времени, причём концентрация полимера пропорциональна степени превращения:

где А- константа, связанная с особенностями (температурой, концентрацией инициатора и т.п.) конкретной реакции.

Поскольку образующийся полимер имеет молекулярную массу больше критической, зависимость вязкости от должна описываться закономерностями, обычными для концентрационной зависимости вязкости полимеров, а именно: в области низких концентраций должно иметь место линейное соотношение переходящее по мере повышения концентрации в зависимость экспоненциального типа, а затем в степенную зависимость η ~α b , типичную для умеренно концентрированных растворов полимеров. Поскольку α ~t, рост вязкости во времени должен подчиняться аналогичному выражению: η ~t b , где константа пропорциональности связана как с величиной А, так и с коэффициентом, входящим в зависимость η (α).

Из этого рассмотрения хорошо видно, что для расчёта изменения вязкости во времени необходимо независимое измерение двух зависимостей: во-первых, функции α (t), определяемой кинетикой полимеризации, и во-вторых, функции η (α), которая связана с механизмом реакции. Это общее положение относится к любой кинетической схеме.

2. Рассмотрим кинетическую схему, связанную с ионной полимеризацией.

Пусть в рассматриваемом модельном случае рост цепи осуществляется на некотором числе активных центров, концентрация которых [Ац] остаётся неизменной по ходу реакции, и обрыва цепи не происходит. Степень превращения определяется по концентрации функциональных групп, а процесс полимеризации состоит в наращивании цепи на активных центрах. Тогда в некоторый момент времени средняя молекулярная масса образующегося полимера пропорциональна отношению: М ~ (). Концентрация полимера в реакционной среде определяется степенью превращения и равна: С=α. Таким образом, в отличие от предыдущего случая в процессе полимеризации изменяется как молекулярная масса, так и содержание полимера в растворе. Для такой схемы вязкость может быть выражена следующим образом:


η~ α b () a . (1)

Во многих реальных процессах происходят значительные тепловыделения вследствие экзотермичности реакции полимеризации и инженерная схема осуществления полимеризации такова, что неизотермическим характером процесса пренебречь нельзя. Это относится к проведению процесса в стационарной форме или реакторе большого объёма. С учётом этого обстоятельства соотношение следует дополнить фактором, отражающим температурную зависимость вязкости. Тогда:

η=Кα b () a exp () (2)

здесь: К- постоянная,

Е- энергия активации вязкого течения,

Т- абсолютная температура,

R- универсальная газовая постоянная

Формула (2) даёт решение вопроса о зависимости η (α), которая может быть представлена в форме:

Неизотермичностью реакции полимеризации можно пренебречь при рассмотрении зависимости η (α) в первом приближении. Это, однако, не означает, что неизотермические эффекты вообще не играют роли. Напротив, они очень сильно проявляются при рассмотрении зависимости α (t) ,т.е. подъём температуры заметно влияет на темп изменения вязкости, прежде всего, вследствие того, что с ростом температуры увеличивается скорость образования полимера, и этот эффект выражен значительно сильнее, чем собственно снижение вязкости с ростом температуры.

Пусть в простейшем случае кинетика полимеризации описывается уравнением первого порядка по α. Тогда для неизотермической реакции:

(3)

Где К 0 - константа; U-энергия активации реакции полимеризации.

При анализе этого уравнения целесообразно исключить температуру и получить соотношение, в которое входит одна переменная α. Это возможно, если принять , характеризующий эффект ускорения, обусловленный экзотермичностью реакции и К 0 = - начальная скорость реакции при Т=Т 0 .

Согласно предложенным преобразованиям уравнение (3) будет иметь вид:

(4)

Решение данного уравнения с учётом граничного условия , при t=0 может быть найдено в аналитической форме:

(5)

Эта формула даёт зависимость , которая вместе с формулой (1) для решает поставленную задачу, позволяя найти характер изменения вязкости при полимеризации, протекающей по принятой кинетической схеме.

Определённые упрощения, полезные для анализа процесса, могут быть сделаны для малых значений параметра . В этом случае формула (5) упростится до линейной зависимости:

что позволяет записать выражение для в простом виде:

, (7)

При ионной полимеризации, по крайней мере, в некоторых случаях ~ . Тогда:

(8),

Где -константа, объединяющая ранее введённые постоянные.

Эта формула позволяет дать некоторые полезные оценки, касающиеся влияния начальной температуры Т 0 и концентрации активных центров на ход изменения вязкости. Роль концентрации видна из формулы (8): при фиксированной продолжительности процесса ~ , где b- показатель степени в формуле для концентрационной зависимости вязкости. Поэтому на начальной стадии полимеризации ~ , так как b , но затем b очень резко возрастает до величин порядка 5-7 для гибкоцепных полимеров или даже больше для полимеров с повышенной жёсткостью цепи. То есть, влияние концентрации активных центров выражено относительно слабо в начале процесса, но резко возрастает по мере его дальнейшего протекания.

3. Рассмотрим кинетическую схему механизма поликонденсации.

В этом случае в процесс наращивания цепи вовлекаются все молекулы. Поэтому при степени превращения средняя степень полимеризации составляет

Концентрация же полимера в реакционном растворе при поликонденсации постоянна и равна . Это означает, что при поликонденсации изменение вязкости происходит существенно иным образом, чем в рассмотренных выше процессах радикальной и ионной полимеризации.

Воспользуйтесь удобным конвертером перевода кинематической вязкости в динамическую онлайн. Поскольку соотношение кинематической и динамической вязкости зависит от плотности, то необходимо ее также указывать при расчете в калькуляторах ниже.

Плотность и вязкость следует указывать при одинаковой температуре.

Если задать плотность при температуре отличной от температуры вязкости повлечет некоторую ошибку, степень которой будет зависеть от влияния температуры на изменение плотности для данного вещества.

Калькулятор перевода кинематической вязкости в динамическую

Конвертер позволяет перевести вязкость с размерностью в сантистоксах [сСт] в сантипуазы [сП] . Обратите внимание, что численные значения величин с размерностями [мм2/с] и [сСт] для кинематической вязкости и [сП] и [мПа*с] для динамической – равны между собой и не требуют дополнительного перевода. Для других размерностей – воспользуйтесь таблицами ниже.

Кинематическая вязкость, [мм2/с]=[сСт]

Плотность, [кг/м3]

Данный калькулятор выполняет обратное действие предыдущему.

Динамическая вязкость, [сП]=[мПа*с]

Плотность, [кг/м3]


Если вы используете условную вязкость ее необходимо перевести в кинематическую. Для этого воспользуйтесь калькулятором .

Таблицы перевода размерностей вязкости

В случае, если размерность Вашей величины не совпадает с используемой в калькуляторе, воспользуйтесь таблицами перевода.

Выберете размерность в левом столбце и умножьте свою величину на множитель, находящийся в ячейке на пересечении с размерностью в верхней строчке.

Табл. 1. Перевод размерностей кинематической вязкости ν

Табл. 2. Перевод размерностей динамической вязкости μ

Стадии появления нефти на земле

Связь динамической и кинематической вязкости

Вязкость жидкости определяет способность жидкости сопротивляться сдвигу при ее движении, а точнее сдвигу слоев относительно друг друга. Поэтому на производствах, где требуется перекачка различных сред, важно точно знать вязкость перекачиваемого продукта и правильно подбирать насосное оборудование.

В технике встречаются два вида вязкости.

  1. Кинематическая вязкость чаще используется в паспорте с характеристиками жидкости.
  2. Динамическая используется в инженерных расчетах оборудования, научно-исследовательских работах и т.д.

Перевод кинематической вязкости в динамическую производят с помощью формулы, указанной ниже, через плотность при заданной температуре:

v – кинематическая вязкость,

n – динамическая вязкость,

p – плотность.

Таким образом, зная ту или иную вязкость и плотность жидкости можно выполнить пересчет одного вида вязкости в другой по указанной формуле или через конвертер выше.

Измерение вязкости

Понятия для этих двух типов вязкости присуще только жидкостям в связи с особенностями способов измерения.

Измерение кинематической вязкости используют метод истечения жидкости через капилляр (например используя прибор Уббелоде). Измерение динамической вязкости происходит через измерение сопротивление движения тела в жидкости (например сопротивление вращению погруженного в жидкость цилиндра).

От чего зависит значение величины вязкости?

Вязкость жидкости зависит в значительной мере от температуры. С увеличением температуры вещество становится более текучим, то есть менее вязким. Причем изменение вязкости, как правило, происходит достаточно резко, то есть нелинейно.

Поскольку расстояние между молекулами жидкого вещества намного меньше, чем у газов, у жидкостей уменьшается внутреннее взаимодействие молекул из-за снижения межмолекулярных связей.

Кстати, прочтите эту статью тоже: Из чего состоит нефть

Форма молекул и их размер, а также взаимоположение и взаимодействие могут определять вязкость жидкости. Также влияет их химическая структура.

Например, для органических соединений вязкость возрастает при наличии полярных циклов и групп.

Для насыщенных углеводородов – рост происходит при “утяжелении” молекулы вещества.

ВАМ БУДЕТ ИНТЕРЕСНО:

Нефтеперерабатывающие заводы России Перевод объемного расхода в массовый и обратно Перевод баррелей нефти в тонны и обратно Трубчатые печи: конструкция и характеристики Формула числа Рейнольдса Re

15.07.2012
Физические свойства гидравлических масел и их влияние на эксплуатационные характеристики

1. Вязкость, вязкостно-температурные характеристики
Вязкость является важнейшим критерием оценки несущих способностей гидравлического масла. Вязкость дифференцируют по динамическим и кинематическим показателям.
Индустриальные смазочные масла и гидравлические масла классифицируют по ISO классам вязкости на основании их кинематической вязкости, которую, в свою очередь, описывают как отношение динамической вязкости к плотности. Эталонной является температура 40 °С. Официальной единицей измерения (St ) для кинематической вязкости является м 2 /с, а в нефтеперерабатывающей промышленности единицей измерения кинематической вязкости является cSt (сантистокс) или мм 2 /с. Классификация вязкости ISO, DIN 51519 для жидких промышленных смазочных материалов описывает 18 сортов (классов) вязкости от 2 до 1500 мм 2 /с при температуре 40 °С. Каждый сорт определяют по средней вязкости при 40 °С и с допустимым отклонением ±10% от этой величины. Вязкостно-температурная зависимость имеет большое значение для гидравлических масел. Вязкость резко увеличивается с понижением температуры и понижается по мере повышения температуры. В практическом смысле пороговая вязкость жидкости (допустимая вязкость при запуске, прибл. 800—2000 мм 2 /с) необходима для использования в насосах различных типов. Минимально допустимая вязкость при высоких температурах определяется началом фазы граничного трения. Минимальная вязкость не должна быть ниже 7—10 мм 2 /с во избежание недопустимого износа насосов и двигателей. Кривые на вязкостно-температурных графиках описывают зависимость вязкости гидравлических жидкостей от температуры. В линейных условиях В—Т - кривые гиперболичны. Путем математической трансформации эти В— Т - кривые могут быть представлены как прямые линии. Эти линии позволяют точно определять вязкость в широком температурном диапазоне. Индекс вязкости (ИВ) является критерием В— Т -зависимости, а В—Т - кривая — градиентом на графике. Чем выше ИВ гидравлической жидкости, тем меньше изменение вязкости с изменением температуры, т. е. тем более полога В— Т - кривая. Гидравлические масла на базе минеральных масел обычно имеют природный ИВ 95-100. Синтетические гидравлические масла на базе сложных эфиров имеют предельный ИВ 140-180, а полигликоли — природный ИВ 180-200 (рис. 1)

Индекс вязкости может быть также повышен с помощью присадок (полимерных присадок, которые должны обладать стойкостью к сдвигу), называемых присадками, улучшающими ИВ, или вязкостными присадками. Гидравлические масла с высокими ИВ обеспечивают легкий запуск, снижают потери в эксплуатационных характеристиках при низких окружающи температурах и улучшают уплотнения и защиту от износа при высоких рабочих температурах. Высокоиндексные масла повышают эффективность системы и увеличивают срок службы узлов и компонентов, подверженных износу (чем выше вязкость при рабочих температурах, тем лучше коэффициент объема).

2. Зависимость вязкости от давления
За несущую способность смазочной пленки ответственна зависимость вязкости смазочного материала от давления. Динамическая вязкость жидких сред повышается с повышением давления. Ниже приведен способ регулирования зависимости динамической вязкости от давления при постоянной температуре.
Зависимость вязкости от давления, а именно увеличение вязкости по мере повышения давления оказывает положительное влияние на удельную нагрузку (например, на подшипники), потому что вязкость смазочной пленки увеличивается под действием высокого парциального давления с 0 до 2000 атм. Вязкость HFC жидкости увеличивается в два раза, минерального масла — в 30 раз, в HFD жидкости — в 60 раз. Этим объясняется сравнительно короткий срок службы роликовых подшипников, если для их смазки используют (HFA, HFC ) смазочные масла на водной основе. На рис. 2. и 3 показана зависимость вязкости от давления для различных гидравлических жидкостей.

Вязкостно-температурные характеристики могут быть также описаны экспоненциальным выражением:

η = η ο · e αP ,

Где η ο — динамическая вязкость при атмосферном давлении, α — коэффициент зависимости «вязкость-давление», Р —давление. Для HFC α = 3,5 · 10 -4 атм -1 ;
для HFD α = 2,2·10 -3 атм -1 ; для HLP α = 1,7·10 -3 атм -1

3. Плотность
Потери гидравлических жидкостей в трубопроводной обвязке и в элементах гидравлической системы прямо пропорциональны плотности жидкости. Например, потери давления прямо пропорциональны плотности:

ΔP = (ρ/2)·ξ·с 2 ,

Где ρ — плотность жидкости, ξ, — коэффициент сопротивления, с — скорость течения жидкости, а ΔP — потеря давления.
Плотность ρ — это масса единицы объема жидкости.

ρ = m/V (кг/м 3).

Плотность гидравлической жидкости измеряют при температуре 15 °С. Она зависит от температуры и давления, так как объем жидкости увеличивается при увеличении температуры. Таким образом, изменение объема жидкости в результате нагрева происходит по уравнению

ΔV =V ·β темп ΔT ,

Что приводит к изменению плотности:

Δρ = ρ·β темп ΔT .

В гидростатических условиях при температурах от -5 до +150 °С достаточно применения линейной формулы к приведенному выше уравнению. Коэффициент термического объемного расширения β темп может быть применен ко всем типам гидравлических жидкостей.

Так как коэффициент термического расширения минеральных масел приблизительно составляет 7 · 10 -4 К -1 , то объем гидравлической жидкости увеличивается на 0,7%, если ее температура повышается на 10 °С. На рис. 5 показана зависимость объема гидравлических жидкостей от температуры.

Зависимость «плотность—давление» гидравлических жидкостей следует также включить в гидростатическую оценку, так как сжимаемость жидкостей негативно влияет на их динамические характеристики. Зависимость плотности от давления можно просто считывать по соответствующим кривым (рис. 6).

4. Сжимаемость
Сжимаемость гидравлических жидкостей на базе минеральных масел зависит от температуры и давления. При давлениях вплоть до 400 атм и температурах до 70 °С, которые являются предельными для индустриальных систем, сжимаемость ревалентна системе. Гидравлические жидкости, применяемые в большинстве гидравлических систем, можно считать несжимаемыми. Однако при давлениях от 1000 до 10 000 атм могут наблюдаться изменения в сжимаемости среды. Сжимаемость выражается коэффициентом β или модулем М (рис. 7, М = К ).

М = 1/β атм = 1/β · 10 5 Н · м 2 = 1/β · 10 5 Па.

Изменение объема можно определить с помощью уравнения

ΔV =V · β(P max -Р нач)

Где ΔV — изменение объема; Р max — максимальное давление; Р нач — начальное давление.

5. Растворимость газов, кавитация
Воздух и другие газы могут растворяться в жидкостях. Жидкость может абсорбировать газ до состояния насыщения. Это не должно негативно влиять на характеристики жидкости. Растворимость газа в жидкости зависит от базовой составляющей типа газа, давления и температуры. При давлении вплоть до ≈300 атм. растворимость газа пропорциональна давлению и соответствует закону Генри.

V G =V F ·α V ·P/P o ,

Где V G — объем растворенного газа; V F — объем жидкости, Р o — атмосферное давление, P —давление жидкости; α V —коэффициент распределения Бунзена (1,013 мбар,20 °С).
Коэффициент Бунзена в высокой степени зависит от базовой жидкости и показывает, насколько (%) газ растворен в единице объема жидкости в нормальных условиях. Растворенный газ может выделяться из гидравлической жидкости при низком статическом давлении (высокой скорости потока и высоком напряжении сдвига) до тех пор, пока не достигнута новая точка насыщения. Скорость, с которой газ покидает жидкость, обычно превышает скорость, с которой газ абсорбируется жидкостью. Газ, выходящий из жидкости в виде пузырьков, изменяет сжимаемость жидкости аналогично пузырькам воздуха. Даже при низких давлениях небольшое количество воздуха может резко снизить несжимаемость жидкости. В мобильных системах с высокой кратностью циркуляции жидкости содержание нерастворенного воздуха может достигать величин вплоть до 5%. Этот нерастворенный воздух очень негативно влияет на эксплуатационные характеристики, несущую способность и динамику системы (смотри раздел 6 — деаэрация и раздел 7 — пенообразование). Поскольку сжимаемость жидкостей в системах обычно протекает очень быстро, пузырьки воздуха могут внезапно разогреться до высокой температуры (адиабатическая компрессия). В экстремальных случаях может быть достигнута температура возгорания жидкости и иметь место микродизельные эффекты.
Пузырьки газа могут также взрываться в насосах в результате сжатия, что может привести к повреждению вследствие эрозии (которую иногда называют кавитацией или псевдокавитацией). Ситуация может усугубиться, если в жидкости образуются пузырьки паров. Таким образом, кавитация происходит тогда, когда давление падает ниже растворимости газа или ниже давления насыщенных паров жидкости.
Кавитация в основном происходит в открытых системах с постоянным объемом, то есть опасность этого явления актуальна для впускных и выпускных контуров и насосов. Ее причинами могут быть слишком низкое абсолютное давление в результате потерь в скорости потока в узких поперечных сечениях, на фильтрах, коллекторах и дроссельных заслонках, вследствие избыточного напора на входе или потерь давления в результате чрезмерной вязкости жидкости. Кавитация может привести к эрозии насосов, снижению к. п. д., пикам давления и чрезмерному шуму.
Это явление может отрицательно влиять на стабильность дроссельных регуляторов и вызывать вспенивание в емкостях, если смесь жидкость-вода возвращается в емкость при атмосферном давлении.

6. Деаэрация
При возвращении гидравлических жидкостей обратно в резервуары поток жидкости способен увлечь с собой воздух. Это может произойти из-за утечек в трубопроводной обвязке при сужении и частичном вакууме. Турбулентность в резервуаре или локальная кавитация говорит об образовании пузырьков воздуха в жидкости.
Захваченный таким образом воздух должен выйти на поверхность жидкости, в противном случае при попадании в насос он может привести к повреждению других компонентов системы. Скорость, с которой пузырьки воздуха поднимаются на поверхность, зависит от диаметра пузырьков, вязкости жидкости, плотности и качества базового масла. Чем выше качество и чистота базового масла, тем быстрее происходит деаэрация. Маловязкие масла обычно деаэрируются быстрее, чем высоковязкие базовые масла. Это связано со скоростью подъема пузырьков.

C = (ρ FL -ρ L )Χ/η,

Где ρ FL — плотность жидкости; ρ L — плотность воздуха; η— динамическая вязкость; X— константа, зависящая от плотности и вязкости жидкости.
Системы должны быть сконструированы таким образом, чтобы воздух не попадал в жидкость, а в случае попадания увлеченные пузырьки воздуха могли легко выйти. Критическими зонами являются резервуары, которые должны быть снабжены перегородками и воздухоотражателями, и конфигурация трубопроводных обвязок и контуров. Присадки не могут положительно влиять на деаэрационные свойства гидравлических жидкостей. ПАВ (в частности, антипенные присадки на основе силиконов) и загрязняющие примеси (например, пластичные смазки и ингибиторы коррозии) вредоносно влияют на деаэрационные характеристики гидравлических масел. Минеральные масла обычно обладают лучшими деаэрационными свойствами, чем огнестойкие жидкости. Деаэрационные свойства HPLD гидравлической жидкости могут быть сопоставимы со свойствами гидравлических жидкостей HLP .
Испытание на определение деаэрационных свойств описано в стандарте DIN 51 381. Этот метод заключается в нагнетании воздуха в масло. Число деаэрации — это время, которое требуется воздуху (минус 0,2%) для того, чтобы покинуть жидкость при температуре 50 °С в заданных условиях.
Долю диспергированного воздуха определяют путем измерения плотности масляно-воздушной смеси.

7. Пенообразование
Поверхностное вспенивание происходит, когда скорость деаэрации выше скорости, с которой пузырьки воздуха лопаются на поверхности жидкости, т. е. когда образовавшихся пузырьков больше, чем разрушившихся. В худшем случае эта пена может быть выдавлена из бака через отверстия или унесена в насос. Антипенные присадки на основе силиконов или не содержащие силиконов способны ускорить разрушение пузырьков путем снижения поверхностного натяжения пены. Они также негативно влияют на деаэрационные свойства жидкости, что может вызвать проблемы сжимаемости и кавитацию. Поэтому антипенные присадки применяются в очень малых концентрациях (≈ 0,001%). Концентрация антипенной присадки может прогрессивно снижаться в результате старения и осаждения на металлических поверхностях, также проблемы пенообразования часто возникают при использовании старых, уже работавших жидкостей. Последующее введение антипенной присадки следует производить только после консультации с производителем гидравлической жидкости.
Объем пены, образующейся на поверхности жидкости, измеряют по времени (сразу, через 10 мин) и при разных температурах (25 и 95 °С). ПАВ, детергенты или диспергирующие присадки, загрязнители в виде пластичной смазки, ингибиторов коррозии, чистящих средств, СОЖ, побочных продуктов окисления и т. д. могут негативно влиять на эффективность антипенных присадок.

8. Деэмульгирование
Деэмульгирование — это способность гидравлической жидкости отталкивать проникшую воду. Вода в гидравлическую жидкость может попасть в результате утечки из теплообменника, образования конденсированной воды в резервуарах вследствие значительных изменений в уровне масла, плохой фильтрации, загрязнения воды из-за неисправности уплотнений и в экстремальных окружающих условиях. Вода в гидравлической жидкости может вызвать коррозию, кавитацию в насосах, увеличить трение и износ, ускорить разрушение эластомеров и пластиков. Свободную воду следует по возможности быстрее удалять из емкостей с гидравлическими жидкостями через сливные краны. Загрязнение водорастворимыми СОЖ, особенно возможное на станочном оборудовании, может вызывать образование липких остатков после испарения воды. Это может спровоцировать проблемы в насосах, клапанах и цилиндрах. Гидравлическая жидкость должна быстро и полностью отталкивать проникшую в нее воду. Деэмульгирование определяют по DIN 51 599, но этот метод неприменим к гидравлическим жидкостям, содержащим моюще-диспергирующие (DD ) присадки. Деэмульгирование — это время, которое требуется для разделения смесей масла и воды. Параметрами деэмульгирования являются:
. вязкость вплоть до 95 мм 2 /с при 40 °С; температура испытания 54 °С;
. вязкость > 95 мм 2 /с; температура 82 °С.
В гидравлических маслах, содержащих DD присадки, вода, жидкие и твердые загрязняющие примеси удерживаются во взвешенном состоянии. Они могут быть удалены с помощью соответствующих фильтрующих систем без использования гидравлической функции машины, исключая негативное воздействие на гидравлическую жидкость. Поэтому DD гидравлические жидкости часто применяются в гидростатическом станочном оборудовании и в мобильных гидравлических системах.
Для машин с высокой кратностью циркуляции, нуждающихся в постоянной эксплуатационной готовности и перманентно подвергнутых опасности попадания воды и других загрязнителей, применение моющих гидравлических жидкостей является первостепенной областью. Гидравлические жидкости, обладающие деэмульгирующими свойствами, рекомендуются к применению в сталеплавильных и прокатных цехах, где присутствуют большие объемы воды и невысокая кратность циркуляции позволяет производить разделение эмульсий в резервуаре. Деэмульгирующие свойства в модифицированной форме используются для определения совместимости оборудования с гидравлическими маслами. Старение гидравлической жидкости негативно влияет на деэмулыирующие свойства.

9. Температура застывания
Температура застывания — это самая низкая температура, при которой жидкость все еще сохраняет текучесть. Образец жидкости систематически охлаждают и испытывают на текучесть при понижении температуры на каждые 3 °С. Такие параметры, как температура застывания и граничная вязкость, определяют самую низкую температуру, при которой возможно нормальное применение масла.

10. Медная коррозия (испытание на медной пластинке)
Медь и медьсодержащие материалы часто применяются в гидравлических системах. Такие материалы, как латунь, литейная бронза или спеченная бронза содержатся в элементах подшипников, направляющих или в узлах управления, ползунах, гидравлических насосах и моторах. Медные трубы применяются в системах охлаждения. Медная коррозия может привести к отказу всей гидравлической системы, поэтому испытание на коррозию медной пластинки проводят для получения информации о коррозионной агрессивности базовых жидкостей и присадок по отношению к материалам, содержащим медь. Методика испытания на коррозионную агрессивность гидравлических жидкостей на минеральной основе, т. е. биологически разлагаемых жидкостей, по отношению к цветным металлам известна как метод Линде (отборочный метод испытания биологически разлагаемых масел на коррозионную агрессивность по отношению к медным сплавам) (SAE Технический бюллетень 981 516, апрель 1998 г.), также известный как VDMA 24570 (VDMA 24570 — биологически быстро разлагаемые гидравлические жидкости — воздействие на сплавы из цветных металлов 03-1999 на немецком языке).
В соответствии со стандартом DIN 51 759, коррозия на медной пластинке может выражаться в форме изменения цвета или образования чешуек. Шлифовальную медную пластинку погружают в испытуемую жидкость на заданное время при заданной температуре. Гидравлические и смазочные масла обычно испытывают при температуре 100 °С. Степень коррозии оценивают в баллах:
1 — легкое изменение цвета;
2 — умеренное изменение цвета;
3 — сильное изменение цвета;
4 — коррозия (потемнение).

11. Содержание воды (Метод Карла Фишера)
Если вода попадает в гидравлическую систему частично тонкодиспергированной настолько, что она проникает в масляную фазу, то в зависимости от плотности гидравлической жидкости вода может также выделяться из масляной фазы. Эту возможность необходимо учитывать при отборе проб для определения содержания воды.
Определение содержания воды в мг/кг (масс) по методу Карла Фишера связано с введением раствора Карла Фишера при прямом или косвенном титровании.

12. Стойкость к старению (метод Баадера)
Это попытка повторить изучение влияния воздуха, температуры и кислорода на гидравлические жидкости в лабораторных условиях. Была предпринята попытка искусственно ускорить старение гидравлических масел путем повышения температуры выше уровней практического применения, а также уровня кислорода в присутствии металлических катализаторов. Увеличение вязкости и увеличение кислотного числа (свободная кислота) регистрируют и оценивают. Результаты лабораторных испытаний переводят на практические условия. Метод Баадера — это практический способ испытания гидравлических и смазочных масел на старение.
В течение заданного периода времени образцы подвергают старению при заданных температуре и давлении потока воздуха при периодическом погружении в масло медного змеевика, действующего в качестве ускорителя окисления. В соответствии с DIN 51 554-3 С, CL и CLP жидкости и HL , HLP , НМ гидравлические масла испытывают на окислительную стабильность при температуре 95 °С. Число омыления выражается в мг КОН/г.

13. Стойкость к старению (метод TOST )
Окислительную стабильность масел для паровых турбин и гидравлических масел, содержащих присадки, определяют в соответствии с DIN 51 587. Метод TOST уже много лет применяется для испытания турбинных масел и гидравлических жидкостей на базе минеральных масел. В модифицированном виде (без воды) сухой TOST метод применяется для определения окислительной стойкости гидравлических масел на базе сложных эфиров.
Старение смазочных масел характеризуется увеличением кислотного числа, когда масло подвергается воздействию кислорода, воды, стали и меди на протяжении максимум 1000 ч при 95 °С (кривая нейтрализации по мере старения). Максимально допустимо увеличение кислотного числа — 2 мг КОН/г после 1000 ч.

14. Кислотное число (число нейтрализации)
Кислотное число гидравлического масла увеличивается в результате старения, перегрева или окисления. Образовавшиеся продукты старения могут агрессивно действовать на насосы и подшипники гидравлической системы. Поэтому кислотное число является важным критерием оценки состояния гидравлической жидкости.
Кислотное число указывает на количество кислотных или щелочных веществ в смазочном масле. Кислоты в минеральных маслах могут агрессивно действовать на конструкционные материалы гидравлической системы. Высокое содержание кислоты нежелательно, так как возможно в результате окисления.

15. Защитные антиокислительные свойства по отношению к стали/черным металлам
Антиокислительные свойства турбинных и гидравлических масел, содержащих присадки, по отношению к стали/черным металлам определяют в соответствии со стандартом DIN 51 585.
Гидравлические жидкости часто содержат диспергированную, растворенную или свободную воду, поэтому гидравлическая жидкость должна обеспечивать защиту от коррозии всех смачиваемых узлов в любых условиях эксплуатации, включая загрязнение водой. Этот метод испытания определяет характеристики антикоррозионных присадок в ряде различных условий эксплуатации.
Испытуемое масло перемешивают с дистиллированной водой (метод А) или с искусственной морской водой (метод В), непрерывно помешивая (в течение 24 ч при температуре 60 °С) стальным стержнем, погруженным в смесь. После стальной стержень исследуют на коррозию. Результаты позволяют оценивать антикоррозионные защитные свойства масла по отношению к стальным компонентам, находящимся в контакте с водой или с водяными парами:
степень коррозии 0 означает отсутствие коррозии,
степень 1 — незначительную коррозию;
степень 2 — умеренную коррозию;
степень 3 — сильную коррозию.

16. Противоизносные свойства (четырехшариковая машина Shell ; VKA, DIN 51350)
Четырехшариковый аппарат компании Shell служит для измерения противоизносных и противозадирных свойств гидравлических жидкостей. Несущую способность гидравлических жидкостей испытывают в условиях граничного трения. Метод служит для определения величин для смазочных масел с присадками, которые выдерживают высокое давление в условиях граничного трения между поверхностями скольжения. Смазочное масло испытывают в четырехшариковом аппарате, который состоит из одного (центрального) вращающегося шарика и трех неподвижных шариков, расположенных в виде кольца. В постоянных условиях испытаний и с заданной продолжительностью измеряют диаметр пятна контакта на трех стационарных шариках или нагрузку на вращающийся шарик, которая может увеличиваться до сваривания с остальными тремя шариками.

17. Стойкость к сдвигу смазочных масел, содержащих полимеры
В смазочные масла для повышения вязкостно-температурных характеристик вводят полимеры, применяемые в качестве присадок, улучшающих индекс вязкости. По мере увеличения молекулярной массы эти вещества становятся все более чувствительными к механическим нагрузкам, например к таким нагрузкам, которые существуют между поршнем и его цилиндром. Для оценки стойкости масел к сдвигу в различных условиях существуют несколько методов испытаний:
DIN 5350-6, четырехшариковый метод, DIN 5354-3, FZG метод и DIN 51 382, метод впрыска дизельного топлива.
Снижение относительной вязкости вследствие сдвига после 20-часового испытания по DIN 5350-6 (определение стойкости к сдвигу смазочных масел, содержащих полимеры, применяемых для роликовых подшипников с коническим вкладышем) применяется в соответствии с DIN 51 524-3 (2006); рекомендуется снижение вязкости вследствие сдвига менее чем на 15%.

18. Механические испытания гидравлических жидкостей в ротационных крыльчатых насосах (DIN 51 389-2)
Испытание на насосе Виккерса и насосах других производителей позволяет реально оценивать характеристики гидравлических жидкостей. Однако в настоящее время в стадии разработки находятся альтернативные методы испытания (в частности, проект DGMK 514 — механические испытания гидравлических жидкостей).
Метод Виккерса служит для определения противоизносных свойств гидравлических жидкостей в ротационном крыльчатом насосе при заданных величинах температуры и давления (140 атм, 250 ч рабочей вязкости жидкости 13 мм 2 /с при изменяющейся температуре). По окончании испытания обследуют кольца и крылья на износ {Vickers V -104С 10 или Vickers V -105С 10). Значения максимально допустимого износа: < 120 мг для кольца и < 30 мг для крыльев.

19. Противоизносные свойства (испытание на шестеренном FZG стенде; DIN 534-1и-2)
Гидравлические жидкости, особенно высоковязкие сорта, применяются в качестве гидравлических и смазочных масел в комбинированных системах. Динамическая вязкость является главным фактором противоизносных характеристик в режиме гидродинамической смазки. При малых скоростях скольжения или высоких давлениях в условиях граничного трения противоизносные свойства жидкости зависят от примененных присадок (образование реактивного слоя). Эти граничные условия воспроизводятся при испытании на FZG стенде.
Этот метод применяется главным образом для определения граничных характеристик смазочных материалов. Определенные шестерни, вращающиеся с определенной скоростью, смазывают разбрызгиванием или распылением масла, начальную температуру которого регистрируют. Нагрузку на ножки зубьев ступенчато повышают и записывают характеристики внешнего вида ножек зубьев. Эту процедуру повторяют до конечной 12-й ступени нагрузки: давление по Герцу на 10-й ступени нагрузки в полосе зацепления составляет 1 539 Н/мм2; на ступени 11 — 1 691 Н/мм 2 ; на 12-й ступени — 1 841 Н/мм 2 . Исходная температура на ступени 4 составляет 90 °С, периферическая скорость — 8,3 м/с, предельную температуру не определяют; применяют геометрию шестерен А.
Определяют нагрузочную ступень отказа по DIN 51 524-2. Для положительного результата это должна быть ступень не менее 10-й. Гидравлические жидкости, отвечающие требованиям ISO VG 46, не содержащие противоизносных присадок, обычно достигают нагрузочной ступени 6 (≈ 929 Н/мм 2). Гидравлические жидкости, содержащие цинк, обычно достигают не менее 10—11-й нагрузочной ступени до разрушения. Не содержащие цинка так называемые ZAF гидравлические жидкости выдерживают ступень нагрузки 12 или выше.

Роман Маслов.
По материалам зарубежных изданий.

В течение года при сезонной смене температуры вязкость транспортируемой нефти изменяется (рис. 1.20). В случае повышения температуры нефти от t 1 до t 2 , вязкость нефти уменьшается. Это приводит к уменьшению гидравлического сопротивления трубопровода (H 2 Q 1).

Рассмотрим влияние изменения вязкости нефти на величину подпоров ПС. Предположим, что на всех станциях установлено одинаковое число однотипных насосов, подпор на головной перекачивающей станции h П, остаточный напор на конечном пункте h ОСТ. Примем для простоты, что нефтепровод состоит из одного эксплуатационного участка N Э =1, а число ПС составляет n (рис. 1.21).

Напор перекачивающей станции в зимний период составит

в летний период

где H 1 , H 2 – суммарные потери напора в трубопроводе, соответственно в зимний и летний периоды.

Рис. 1.20. Совмещенная характеристика трубопровода и ПС

при изменении вязкости нефти

Рис. 1.21. Влияние сезонного изменения вязкости нефти

на величину подпоров перед ПС

Из начальной точки профиля трассы отложим в вертикальном масштабе значения H 1 и H 2 , затем вершины отрезков соединим прямыми с точкой z K +h ОСТ. Полученные линии соответствуют положению линий гидравлических уклонов в зимний i 1 и летний i 2 периоды.

Представим, что трасса трубопровода – восходящая прямая AB. Как видно из построений, при расстановке станций такая трасса будет разбита на равные участки длиной L/n. При этом линии гидравлических уклонов i 1 и i 2 пересекут линию AB в одних и тех же точках. Это говорит о том, что при монотонном профиле трассы нефтепровода изменение вязкости нефти не оказывает влияния на величину подпоров на входе промежуточных ПС.

В реальных условиях профиль трассы может быть сильно пересеченным, тогда расстояния между перекачивающими станциями будут неодинаковы (l 1 l 2 l 3 l n). Рассмотрим изменение подпора перед ПС в этом случае.

Величину подпора H C перед с-й ПС можно найти из уравнения баланса напоров

где a=m M a M и b=m M b M .

Значение расхода в выражении (1.61) определяется из уравнения баланса напоров нефтепровода в целом (1.37), что позволяет записать

. (1.62)

После подстановки (1.62) в (1.61), получим

Как следует из выражения (1.63), от величины вязкости зависит только один сомножитель , так как.

Введем обозначения:

;

–среднее расстояние между перекачивающими станциями на участке до с-й ПС;

–среднее арифметическое расстояние между ПС;

С учетом принятых упрощений выражение (1.63) можно представить в виде

где .

Величина F прямо пропорционально зависит от изменения вязкости нефти: при снижении вязкости уменьшается и величина F.

Если выполняется условие L ср < l ср(С) , то при уменьшении вязкости подпор на с-й ПС возрастает. В противном случае при L ср > l ср(С) подпор на с-й ПС снижается и может оказаться меньше допустимого значения H min (рис. 1. 21). В случае расстановки ПС согласно гидравлическому расчету при минимальной температуре нефти (t 1 =t min ,  1 = mах), необходимо проанали­зи­ровать работу каждого перегона в летний период.

В летнее время, если позволяет прочность трубы, можно увеличить подпор на ГПС включением дополнительного последовательно соединенного подпорного насоса.