Все о печах и каминах - Информационный портал

В переднем мозге есть извилины. Верхнелатеральная, медиальная и нижняя поверхности

Лобные доли мозга, lobus frontalis – передний отдел больших полушарий, содержащих серое и белое вещество (нервные клетки и проводящие волокна между ними). Поверхность их бугристая с извилинами, доли наделены определёнными функциями и управляющие различными отделами тела. Лобные доли мозга отвечают за мышление, мотивацию поступков, двигательную активность и построение речи. При поражении этого отдела центральной нервной системы возможны моторные расстройства, и поведения.

Основные функции

Лобные доли головного мозга – передний отдел центральной нервной системы, отвечающий за сложную нервную деятельность, регулирует мыслительную активность, направленную на решение актуальных проблем. Мотивационная деятельность – одна из важнейших функций.

Основные задачи:

  1. Мышление и интегративная функция.
  2. Контроль мочеиспускания.
  3. Мотивация.
  4. Речь и почерк.
  5. Контроль поведения.

За что отвечает лобная доля головного мозга? Она управляет движениями конечностей, мимических мышц, смыслового построения речи, а также за мочеиспускание. Развиваются нейронные связи в коре под воздействием воспитания, получения опыта двигательной активности, письменности.

Эта часть мозга отделена от теменного отдела центральной бороздой. Они состоят из четырех извилин: вертикальная, три горизонтальных. В задней части находится экстрапирамидная система, состоящая из нескольких подкорковых ядер, регулирующих движения. Глазодвигательный центр расположен рядом, отвечает за поворот головы и глаз по направлению к раздражителю.

Узнайте, что такое , функции, симптомы при патологических состояниях.

За что отвечает , функции, патологии.

Лобные доли мозга отвечают за:

  1. Восприятие действительности.
  2. Находятся центры памяти и речи.
  3. Эмоции и волевую сферу.

При их участии производится контроль последовательности действий одного моторного акта. Проявления поражений называют синдром лобной доли, который возникает при различных повреждениях мозга:

  1. Черепно-мозговые травмы.
  2. Лобно-височное слабоумие.
  3. Онкологические заболевания.
  4. Геморрагический или ишемический инсульт.

Симптомы поражения лобной доли мозга

При поражении нервных клеток и проводящих путей lobus frontalis головного мозга происходит нарушение мотивации, называемое абулией. Страдающие данным расстройством люди проявляют лень, обусловленную субъективной потерей смысла жизни. Такие пациенты часто спят целый день.

При поражении лобной доли нарушается мыслительная деятельность, направленная на решение задач и проблем. Синдром включает также нарушение восприятия действительности, поведение становится импульсивным. Планирование поступков происходит спонтанно, без взвешивания пользы и риска, возможных неблагоприятных последствий.

Нарушается концентрация внимания на определённой задаче. Больной, страдающий синдромом лобной доли, часто отвлекается на сторонние раздражители, не способен сосредоточиться.

Вместе с тем возникает апатия, потеря интереса к тем занятиям, которыми ранее увлекался пациент. В общении с другими людьми проявляется нарушение чувства личностных границ. Возможно импульсивное поведение: плоские шутки, агрессия, связанная с удовлетворением биологических потребностей.

Эмоциональная сфера также страдает: человек становится невосприимчив, безразличен. Возможна эйфория, которая резко сменяется агрессивностью. Травмы лобных долей ведут к изменению личности, а иногда и полной потере ее свойств. Могут поменяться предпочтения в искусстве, музыке.

При патологии правых отделов наблюдается гиперактивность, агрессивное поведение, болтливость. Левостороннее поражение характеризуется общим торможением, апатией, подавленностью, склонностью к депрессии.

Симптомы при повреждении:

  1. Хватательные рефлексы, оральный автоматизм.
  2. Нарушение речи: моторная афазия, дисфония, корковая дизартрия.
  3. Абулия: потеря мотивации деятельности.

Неврологические проявления:

  1. Хватательный рефлекс Янишевского-Бехтерева проявляется при раздражении кожи руки у основания пальцев.
  2. Рефлекс Шустера: схватывание предметов, находящихся в поле зрения.
  3. Симптом Германа: разгибание пальцев ног при раздражении кожи стопы.
  4. Симптом Барре: если придать руке неудобное положение, больной продолжает поддерживать его.
  5. Симптом Раздольского: при раздражении молоточком передней поверхности голени или по подвздошному гребню больной непроизвольно совершает сгибание-отведение бедра.
  6. Симптом Дуффа: постоянное потирание носа.

Психическая симптоматика

Синдром Брунса-Ястровица проявляется в расторможенности, развязности. У пациента отсутствует критическое отношение к себе и своему поведению, контроль его, с точки зрения социальных норм.

Мотивационные нарушения проявляются в игнорировании препятствий к удовлетворению биологических потребностей. В то же время сосредоточение на жизненных задачах фиксируется очень слабо.

Другие расстройства

Речь при поражении центров Брока становится хриплой, растормаживается, контроль ее осуществляется слабо. Возможна моторная афазия, проявляющаяся в нарушении артикуляции.

Двигательные нарушения проявляются в расстройстве почерка. У больного человека нарушена координация моторных актов, представляющих собой цепочку нескольких действий, которые начинаются и останавливаются друг за другом.

Возможна также потеря интеллекта, полная деградация личности. Теряется интерес к профессиональной деятельности. Абулическо-апатический синдром проявляется в заторможенности, сонливости. Данный отдел отвечает за сложные нервные функции. Поражение его приводит к изменению личности, нарушению речи и поведения, появления патологических рефлексов.

фрагменты из статьи «Музыкальный мозг: обзор отечественных и зарубежных исследований» Панюшева Т.Д. МГУ им. М.В.Ломоносова, факультет психологии, кафедра пато- и нейропсихологии, Москва, Россия (журнал «Асимметрия» Том 2, № 2, 2008, стр. 41 – 54)

Исследователей всегда привлекала возможность изучения работы мозга людей, профессионально занимающихся какой-либо деятельностью, требующей высокой степени интеграции мозга, тесного взаимодействия сенсомоторных систем. Это позволяет рассмотреть возможности пластичности мозга, как с функциональной, так и с анатомической точек зрения. В русле этих исследований все больший интерес вызывает музыкальная деятельность … В последние годы появилось большое количество исследований мозга людей, профессионально занимающихся музыкой …

Анатомо-функциональные особенности мозга музыкантов в сопоставлении с немузыкантами

Роль задних отделов верхней височной извилины в обеспечении музыкальной деятельности . Большое количество фактов накоплено о выраженной среди музыкантов асимметрии в области задней части верхней височной извилины (центр Вернике). Были описаны значительные анатомические отличия мозга известных музыкантов по сравнению с немузыкантами при вскрытии после смерти. Выявилась выраженная асимметрия в основном в структурах височных долей, и было установлено увеличение размера задних отделов левой верхней височной извилины (planum temporale). Сначала этот факт связали с речью, так как указанная асимметрия впервые возникла у высших приматов, что связывалось с эволюцией языка. Гельмут Штейнмец в подтверждение этому обнаружил, что у людей с трудностями различения языковых фонем этот отдел даже меньше, чем у обычных людей. Но исследования профессиональных музыкантов выявили связь асимметрии этой области мозга и с музыкой. С помощью позитронно-эмиссионной томографии было обнаружено, что при восприятии звуковых тонов и мелодий людьми без музыкального образования кровоток усиливался в правом полушарии. При обработке музыкальной информации опытными музыкантами кровоснабжение и метаболическая активность заметно возрастали в задней части левой верхней височной извилины. Клиническим подтверждением этой связи явилось исследование после смерти мозга музыкантов с глухотой к мелодии, развившейся вследствие локальных поражений мозга. Все поражения находились в области центра Вернике. Данные МРТ также демонстрируют более выраженную латерализацию этой области мозга у музыкантов.

Была отмечена значимость для наличия этого факта абсолютного слуха: музыканты без абсолютного слуха не отличались от контрольной группы, тогда как у музыкантов с абсолютным слухом выявилась сильная левосторонняя асимметрия. В дальнейших исследованиях асимметрия задней части верхней височной извилины стало в основном связываться с наличием или отсутствием абсолютного слуха. Многие исследования указывают на врожденность абсолютного слуха. Позже был выявлен еще один важный фактор для развития абсолютного слуха - раннее начало обучения. Для людей с абсолютным слухом типичным возрастом начала обучения считается 5±2 года, тогда как для музыкантов без абсолютного слуха на 1 - 2 года позже. Эти данные могут объясняться тем, что созревание волоконных трактов и внутрикоркового нейропиля в задней части верхней височной извилины продолжается вплоть до семилетнего возраста … Вовлеченность лимбической и паралимбической (лобноорбитальные структуры) систем известна как участвующая в обработке эмоционального аспекта музыкального восприятия …

Влияние занятий музыкой на мозолистое тело . Многие исследователи, изучающие особенности мозга музыкантов, обращают внимание на мозолистое тело. И восприятие музыки, и использование обеих рук при игре на музыкальном инструменте требует тесного взаимодействия между полушариями. Существует предположение, что увеличение какого-либо участка мозолистого тела свидетельствует о повышении объема информации, которая может передаваться от одного полушария к другому. При этом более симметричная организация мозга сочетается с большим размером мозолистого тела. Была выдвинута гипотеза, согласно которой раннее начало и интенсивные занятия на музыкальном инструменте могут способствовать повышенному и более быстрому обмену информацией между полушариями. Сравнение мозолистого тела у профессиональных музыкантов и людей без музыкального образования при помощи МРТ выявило значимые отличия в его анатомии: передняя часть мозолистого тела у музыкантов, которые начали заниматься музыкой до 7 лет, значимо больше, чем у немузыкантов и музыкантов с более поздним началом музыкальных тренировок. Интересно, что при выполнении тестов на рукость музыканты показали гораздо большую симметричность. Именно с этим фактом связывают увеличение размера передней части мозолистого тела у музыкантов, так как через переднюю часть мозолистого тела проходят волокна, соединяющие первичные зоны коры, такие как сенсомоторная, премоторная, дополнительная моторная и префронтальная. Кроме того, у музыкантов в сравнении с немузыкантами проявилось повышенное транскаллозальное торможение. Таким образом, основные отличия заключается в улучшении связей между обоими полушариями и смене баланса между облегчением и затормаживанием этих связей.

Влияние музыкальной деятельности на мозжечок . В некоторых исследованиях было обнаружено участие мозжечка в когнитивной деятельности, а также и в музыкальных процессах. В одном из исследований применялась МРТ с целью изучения, будет ли у профессиональных пианистов, осваивающих специальные моторные навыки с раннего детства, больший по размеру мозжечок в сравнении с немузыкантами. В результате исследования обнаружился значительно больший абсолютный и относительный размер мозжечка у мужчин-музыкантов в сравнении с немузыкантами. Интенсивность практики в течение жизни коррелировала с относительным размером мозжечка в группе мужчин-музыкантов. В женской группе не было получено значимых отличий между музыкантами и немузыкантами.

Распределение серого вещества в мозге у музыкантов и немузыкантов . Исследование всего мозга в целом при помощи оптимизированного метода морфометрии (voxel-based morphometry) показало отличия в распределении серого вещества мозга у профессиональных музыкантов, любителей и немузыкантов. Различия были обнаружены в правом и левом полушарии в первичной моторной и соматосенсорной коре, премоторной области, передней верхней теменной области и в нижней височной извилине. Объем серого вещества в этих зонах оказался самым высоким у профессиональных музыкантов, средним - у любителей, а самым низким - у немузыкантов. Кроме этого, положительные корреляции с музыкальным статусом были обнаружены в левой части мозжечка, извилине Гешля и нижней лобной извилине в левом полушарии. Больший объем серого вещества в извилине Гешля объясняется активностью этой зоны мозга у музыкантов в процессе прослушивания нот. Верхняя теменная область известна как играющая важную роль в интеграции мультимодальной сенсорной информации и поставляющая информацию для моторных операций через интенсивные взаимосвязи с премоторной корой. Кроме того, верхняя теменная область играет значительную роль в процессе чтения нот с листа. Функциональная активность в нижней височной извилине повышается и сопровождается активностью вентральной префронтальной коры в ситуации обучения выбору определенного действия в ответ на зрительную стимуляцию. Эти задачи ежедневно приходится решать музыканту в ходе игры на инструменте.

Функциональные особенности работы мозга в процессе восприятия музыки у музыкантов и немузыкантов

… При помощи дихотического прослушивания и электроэнцефалограммы были получены данные, уточняющие функции обоих полушарий в процессе восприятия музыки: правое полушарие отвечает за восприятие мелодических аспектов, высоты тонов, длительности интервалов, интенсивности, тембра, аккордов. Левое полушарие связано с восприятием ритма, профессиональным анализом музыки. Существование «музыкальной специализации» полушарий в восприятии музыки, имеющейся у взрослых людей, было обнаружено уже у восьмимесячных младенцев.

Важна не только роль каждого полушария по отдельности, но и закономерности совместной работы обоих полушарий мозга в процессе обработки музыкальной информации. Сопоставление биоэлектрической активности мозга в процессе восприятия текстов и музыки показало, что при восприятии невербальной информации ведущим мозговым механизмом выступает пространственная синхронизация мозга. При обработке невербальной информации возникает равномерное значительное увеличение уровня синхронизации во всех областях мозга, тогда как при восприятии семантической информации увеличивалась синхронизация преимущественно внутриполушарных взаимодействий…

… Для изучения восприятия музыки важно понимать, какие основные характеристики музыки анализируются при ее восприятии. Основу музыкальной организации составляют мелодия и ритм. Они позволяют организовать отдельные воспринятые на слух элементы в высоко организованные последовательности, которые мозг может легко узнать и охватить. Если музыкант-любитель сравнивает разную высоту звуков, то активными становится задняя часть лобной доли и правая верхняя височная извилина. В височной области в слуховой рабочей памяти тоны хранятся для будущего использования и сравнения. Средняя и нижняя височная извилины активны при обработке более сложных музыкальных структур или структур, хранящихся в памяти на долгий период. В отличие от этого профессиональные музыканты демонстрируют увеличение активности в левом полушарии, когда они различают высоту или прослушивают аккорды. Если же слушатель фокусируется на всей мелодии в целом, то совершенно разные зонымозга становятся активны: кроме первичной и вторичной слуховой коры подключается слуховая ассоциативная область, и активность снова концентрируется в правом полушарии. В процессе сравнения музыкантом-любителем простых ритмических отношений в мелодии задействуются премоторные зоны и теменные доли левого полушария. Если временные отношения между тонами более сложные, то активными становятся премоторные и фронтальные отделы правого полушария. В обоих случаях участвует мозжечок. В отличие от музыкантовлюбителей, у профессиональных музыкантов активизируются фронтальная и височная доли правого полушария.

Исследования взрослых людей показали, что мозг по-разному специализируется в обработке мелодии и ритма с преимущественным вовлечением правого полушария в обработку мелодии и левого – в обработку ритма. Исследование нейронного базиса обработки ритма и мелодии детьми может раскрыть важные закономерности развития «музыкального» мозга. Результаты изучения обработки детьми мелодий и ритмов показали выраженную билатеральную активность в верхней височной извилине. Не было обнаружено различий в активации при выполнении проб с мелодиями и с ритмами. Но при сужении области анализа только до верхней височной извилины обнаружилась значительно большая активация в процессе различения мелодий в небольшом ее участке в правом полушарии. Схожая активация была обнаружена в исследованиях на взрослых при прослушивании незнакомых тональных мелодий. Возможно, у детей полушарная специализация по обработке ритмов и мелодий менее выражена в отличие от взрослых.

Несмотря на важность мелодии и ритма в структуре музыки, сами по себе они являются комплексными характеристиками, поэтому исследователи нередко обращаются к звуковысотному восприятию или звуковысотной памяти. В существующей литературе данные об активации мозга в процессе экспериментов на звуковысотную память и различение высоты противоречивы. Сравнение звуковысотного восприятия у музыкантов и немузыкантов с применением МРТ показало сходные результаты в выполнении заданий при отличии активизировавшихся нейронных сетей. У музыкантов активировалась нейронная сеть, включающая области кратковременной слуховой памяти и области, вовлеченные в зрительно-пространственную обработку информации: задняя часть правой верхней височной извилины и супрамаргинальная (надкраевая) извилина, верхние теменные зоны. У немузыкантов активировались области, важные для различения высоты и традиционные зоны, связанные с памятью. Применение непрерывного сканирования мозга позволило выявить, кроме уже упомянутых структур, выраженную активацию дорзального мозжечка. Мозжечок, по данным разных исследований, связан со слуховыми задачами,такими как планирование речевой продукции, функциями слуховой вербальной памяти, узнаванием тонов, распознаванием музыкального темпа и длительностей. Кроме того, пациенты с поражениями мозжечка оказывались не в состоянии различать высоту нот.

Также существуют гендерные отличия в процессе выполнения проб на звуковысотную память: по данным некоторых авторов у мужчин отмечается большая левосторонняя активация в височной доле, а также большая активация мозжечка. Возможно, половые отличия в активации мозга обеспечиваются разными перцептивными стратегиями …

Влияние занятий музыкой на когнитивные процессы

Эффект влияния музыкальных тренировок на отдельные области когнитивной деятельности, такие как язык, математика, пространственные функции, является предметом дебатов, хотя некоторые исследования свидетельствуют о положительном влиянии музыки. Что касается математики, то при решении музыкантами и немузыкантами математических задач в уме были получены разные паттерны активации мозга. У музыкантов значительно большая активация была обнаружена в префронтальной коре слева и левой фузиформной извилине. У немузыкантов - в правой нижней затылочной извилине, левой средней затылочной извилине, правой орбитальной извилине, левой нижней теменной дольке. Возросшая активация в левой фузиформной извилине может объясняться ее вовлечением в процессы, включенные в более «абстрактный» уровень презентации зрительной информации. То есть музыканты могут применять более абстрактные репрезентации чисел и особенно дробей. Возросшая активация в левой префронтальной коре у музыкантов также наводит на мысль, что предполагаемая связь между музыкальными тренировками и хорошими результатами в математике может объясняться развитой семантической рабочей памятью.

Лонгитюдные исследования детей, занимающихся музыкой, подтверждают предположение о влиянии музыкальных занятий на развитие речевой памяти. Эта гипотеза возникла в связи с тенденцией к увеличению размера задней части левой верхней височной извилины у музыкантов, и именно левая височная доля опосредствует речевую память, тогда как визуальная память обеспечивается главным образом правой височной областью. К тому же, по некоторым данным, молодые люди с опытом по меньшей мере 6 лет занятий музыкой демонстрируют лучшую вербальную, но не зрительную память в сравнении с людьми без такого опыта. Дети с опытом музыкальных занятий показали лучшие результаты в заданиях на вербальную память, и продолжительность занятий коррелировала с успешностью выполнения. Отличий в зрительной памяти не наблюдалось. Через год продолжившие занятия дети продемонстрировали улучшение вербальной памяти, тогда как группа прекративших занятия этого не показала. В то же время результаты по зрительной памяти у всех детей остались схожими …

Полный текст статьи «Музыкальный мозг: обзор отечественных и зарубежных исследований» Панюшева Т.Д. МГУ им. М.В. Ломоносова, факультет психологии, кафедра пато- и нейропсихологии, Москва (журнал «Асимметрия» Том 2, № 2, 2008, стр. 41 – 54) [читать ]

Читайте также :

статья «K448» В.В. Крылов, И.С. Трифонов, О.О. Кочеткова; Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Москва; ГБУЗ «Научно-исследовательский Институт скорой помощи им. Н.В. Склифосовского», Москва (журнал «Нейрохирургия» №4, 2016) [читать ];

статья «Энергия музыки: нейрофизиологическое воздействие» кандидат философских наук К.С. Шаров, (журнал «Энергия: экономика, техника, экология» №1, 2017) [читать ]


© Laesus De Liro


Уважаемые авторы научных материалов, которые я использую в своих сообщениях! Если Вы усматривайте в этом нарушение «Закона РФ об авторском праве» или желаете видеть изложение Вашего материала в ином виде (или в ином контексте), то в этом случае напишите мне (на почтовый адрес: [email protected] ) и я немедленно устраню все нарушения и неточности. Но поскольку мой блог не имеет никакой коммерческой цели (и основы) [лично для меня], а несет сугубо образовательную цель (и, как правило, всегда имеет активную ссылку на автора и его научный труд), поэтому я был бы благодарен Вам за шанс сделать некоторые исключения для моих сообщений (вопреки имеющимся правовым нормам). С уважением, Laesus De Liro.

Posts from This Journal by “нейрофизиология” Tag

  • Аквапорины

    СПРАВОЧНИК НЕВРОЛОГА ВВЕДЕНИЕ Вода составляет примерно 70% массы большинства живых организмов. Однако содержание ее внутри и вне…


  • Когнитивный резерв

    Нельзя быть слишком старым человеком, чтобы улучшать работу вашего мозга. Самые последние исследования показывают, что резерв мозга можно…

Методическое письмо составлено доцентом кафедры судебной медицины Самарского медицинского института имени Д.И.Ульянова доктором медицинских наук В.В.Сергеевым. Самара, 1992.

"... Наиболее часто встречаются следующие виды смещения головного мозга:


3) смещение височной доли в отверстие мозжечкового намета (височный конус давления по Винсенту);
5) смещение мозжечка в затылочно-шейную дуральную воронку (мозжечковый конус давления по Кушингу)... "

Диагностика смещения и сдавления головного мозга при судебно-медицинской экспертизе трупа / Сергеев В.В. — .

библиографическое описание:
Диагностика смещения и сдавления головного мозга при судебно-медицинской экспертизе трупа / Сергеев В.В. — .

html код:
/ Сергеев В.В. — .

код для вставки на форум:
Диагностика смещения и сдавления головного мозга при судебно-медицинской экспертизе трупа / Сергеев В.В. — .

wiki:
/ Сергеев В.В. — .

Важным звеном пато- и танатогенеза при черепно-мозговой травме, интоксикациях, гипертонической болезни и многих других патологических процессах нередко выступают смещение и сдавление головного мозга, что определяет значимость их макроскопической диагностики в процессе судебно-медицинской экспертизы трупа. Морфологические изменения в головном мозге, возникающие при его отеке-набухании, аксиальном и поперечном смещении, диффузном и очаговом сдавлении, в настоящее время хорошо изучены .

При увеличении объема головного мозга отмечают напряжение твердой мозговой оболочки, в отдельных случаях - ее истончение. Мягкая мозговая оболочка при отеке-набухании головного мозга может быть мутноватой. Количество ликвора под паутинной оболочкой при этом колеблется в широком диапазоне. В этой связи особого внимания заслуживает изучение количества и характера ликвора в цистернах мягкой мозговой оболочки.

Основными цистернами являются (цит. по ):

I) большая цистерна, располагающаяся между мозжечком и продолговатым мозгом (передняя её стенка - задне-боковая поверхность продолговатого мозга, верхняя - передне-нижняя поверхность мозжечка, задняя - паутинная оболочка);
2) цистерна боковой ямки головного мозга локализуется в боковой борозде мозга;
3) цистерны моста (средняя и боковые), нижней границей которых является тонкая перепонка, прикрепляющаяся ко дну борозды между мостом и продолговатым мозгом; верхний границу образует перфорированная перегородка (тянется в виде дуги вдоль верхнего края моста к корешкам тройничного нерва)*, боковые цистерны содержат лицевой, отводящий и тройничный нерв;
4) межножковая цистерна расположена кпереди и кверху от переднего края моста и доходит до ножки гипофиза;
5) цистерна перекреста находится между перекрестом зрительных нервов;
6) цистерна пограничной пластинки распространяется от перекреста зрительных нервов до мозолистого тела;
7) цистерна мозолистого тела проходит вдоль верхней поверхности и колена мозолистого тела;
8) охватывающая цистерна окружает ствол головного мозга.

Смещение и сдавление головного мозга происходит, как правило, в области вышеназванных цистерн.

Макроскопическая картина головного мозга при отеке-набухании зависит от того, что преобладает в развитии патологического процесса - отек или набухание .

Отечный мозг большой, тяжелый, мягкий, рыхлый, с консистенцией доходящей до псевдофлюктуации. Ткань мозга на разрезе влажная, блестящая. На поверхности разреза выделяется много свободной жидкости. Кровяные точки и полоски легко растекаются и сливаются на поверхности разреза. Мозговое вещество не прилипает к ножу. Граница между серым и белым веществом теряет четкость.

Набухший мозг характеризуют как большой, "тяжелый, плотный, эластичный. Ткань мозга на разрезе сухая, блестящая. Выявляемые в небольшом количестве кровяные точки и полоски на поверхности разреза мозга не растекаются. Мозговое вещество прилипает к ножу. Желудочки головного мозга щелевидные.

В результате отека-набухания объем головного мозга увеличивается, вследствие чего может наблюдаться диффузное сдавление мозга. При этом макроскопически определяют уплощение извилин, сужение борозд, расширение вен коры, мелкие кровоизлияния в местах, соответствующих костным возвышениям и краям твердой мозговой оболочки (их не следует путать с "первичными" травматическими кровоизлияниями). В центре заднего отдела мозолистого тела можно встретить продольную полосу вдавления, возникающую вследствие дорсального смещения мозолистого тела и сдавления его свободным краем серповидного отростка твердой мозговой оболочки. Многие особенности макроскопической картины очагового сдавления головного мозга определяются видом его смещения.

Наиболее часто встречаются следующие виды смещения головного мозга:

1) боковое смещение под серповидный отросток твердой мозговой оболочки;
2) смещение извилин лобной доли в среднюю черепную ямку;
3) смещение височной доли в отверстие мозжечкового намета (височный конус давления по Винсенту);
4) смещение мозжечка в отверстие мозжечкового намета;
5) смещение мозжечка в затылочно-шейную дуральную воронку (мозжечковый конус давления по Кушингу).

Боковое смещение головного мозга под серповидный отросток твердой мозговой оболочки проявляется выпячиванием одной из поясных извилин. При этом больше смещаются передние отделы извилин, что приводит к образованию полосы вдавления от свободного края серповидного отростка. Отмечают боковое смещение мозолистого тела. Боковой желудочек с одной стороны сдавлен, с другой - расширен (деформация Винкельбауара). Третий желудочек представляет собой щель, выгнутую в ту или иную сторону".

Смещение извилин лобной доли в среднюю черепную ямку проявляется двусторонним вклинением задних концов прямых извилин в цистерну перекреста. На нижних поверхностях орбитальных извилин и на обонятельных нервах наблюдают полосы сдавления от малых крыльев основной кости.

Смещение височной доли в отверстие мозжечкового намета заключается в выпячивании под намет нижних отделов височных долей головного мозга. Медиальный край крючка парагиппокампальной извилины может отстоять от участка сдавления, образованного краем намета, на 1,8 см; в норме это расстояние составляет 0,3-0,4 см . На глазодвигательном нерве определяют борозду, возникающую от давления краем медиальной каменисто-клиновидной связки. На задней поверхности серого бугра выявляют участок сдавления от края спинки турецкого седла. Если преобладает смещение одной из височных долей, то происходит заметная дислокация сосковидного тела и задней соединительной артерии, а на ножке мозга видна полоса сдавления.

Смещение мозжечка в отверстие мозжечкового намета развивается в области охватывающей цистерны. В формировании данного вида смещения принимают участие верхний отдел червя и дольки верхней поверхности мозжечка. Вклинение имеет форму полушария до 4,5 см в диаметре . Пространство между зрительными буграми расширено, подушки зрительных бугров и эпифиз сдавлены. В отверстие мозжечкового намета может смещаться также и варолиев мост, что приводит к его уплощению в передне-заднем направлении (вследствие придавливания к блюменбаховскому скату). В норме ширина моста - 3 см, длина - 2,2 см (цит. по ). Вентральная поверхность моста уплощается, в центре обнаруживают полосу сдавления от основной артерии. В боковых отделах моста выявляются вмятины, повторяющие форму яремных бугров. Сглаживается поперечная борозда между мостом и продолговатым мозгом.

Смещение мозжечка в затылочно-дуральную воронку проявляется вклинением в неё двубрюшных долек, миндалин и нижнего отдела червя мозжечка. Нижняя поверхность мозжечка прижимается к чешуе затылочной кости, повторяя её контуры и сохраняя сферическую форму. Верхняя поверхность, мозжечка уплощается. Сместившиеся в большое затылочное отверстие миндалины мозжечка охватывают задне-боковые отделы продолговатого мозга, на миндалинах становятся заметными полосы сдавления. Продолговатый мозг виде места сдавления иногда колбообразно расширяется вследствие отека. Нижние отделы червя мозжечка, придавливаясь к нижней половине ромбовидной ямки, образуют в ней заметный участок вдавления.

Названные виды смещения и сдавления голодного мозга, имея характерную макроскопическую картину, диагностируются, как правило, без особого труда. Определенные сложности возникают лишь при попытке количественно оценить степень выраженности сдавления головного мозга. В этой связи представляется целесообразным дополнить методы описательной морфологии при изучении головного мозга морфометрическими методами исследования.

Для проведения морфометрического исследования необходимо приготовить: банку на 4-5 л, имеющую в верхнем отделе желобообразный сток; банку на 2-3 л; мерный стакан и цилиндр; гранулы полистирола (2000 см3); весы.

В процессе исследования головного мозга измеряют:
1) объем вместимости полости черепа (Vвпч) путем засыпания полости черепа (после извлечения головного мозга и твердой мозговой оболочки) гранулами полистирола через сформированный дефект треугольной формы (высота треугольника 2-3 см) в чешуе височной кости;
2) объем головного мозга (Vгм) по объему вытесненной воды;
3) объем, занимаемый твердой мозговой оболочкой (Vтмо) объему вытесненной воды;
4) объем крови в синусах твердой мозговой оболочки (Vкс) по объему крови, вытекающей в полость черепа при извлечении головного мозга;
5) объем эпи- и субдуральной гематомы (Vг);
6) массу головного мозга (m).

На основе полученных данных рассчитывают следующие показатели:
1) "индекс набухания" (ИН) по формуле: ИН = (I - (Vгм/ Vвпч))100, характеризующий в процентом отношении разницу между объемами вместимости полости черепа и головного мозга;
2) "индекс сдавления" (ИС) по формуле: ИС = (I- (Vс/ Vвпч))100, где Vс - суммарный объем содержимого полости черепа, рассчитанный, как сумма Vгм, Vтмо, Vкс, Vг;
3) относительную плотность головного мозга (в первом приближении) по формуле: Ротн = Р/Рн2 о, где Р - плотность головного мозга, рассчитанная по формуле: Р =m/Vгм; Рн2о – плотность воды при 20°С (0,998).

Между емкостью (вместимостью) черепа и объемом головного мозга нельзя ставить знак равенства, так как содержимое полости черепа, кроме головного мозга, составляют его оболочки, сосуды, ликвор . Известно, что к 20 годам объем вместимости полости черепа в среднем превышает объем головного мозга на 300 см3 или 2.0% от емкости черепа (цит. по [б]). Установлено, что мозг может считаться набухшим, если разница между вместимостью полости черепа и объемом головного мозга меньше 8>% . Отмечено, что сдавление головного мозга может явиться непосредственной причиной смерти при скоплении в полости черепа (над и под твердой оболочкой) от 70 до 120 мл [б] , в среднем 95 мл, что соответствует примерно 6% вместимости полости черепа. Поэтому, с учетом отека-набухания головного мозга, сдавление вещества головного мозга, по-видимому, играет ведущую роль в танатогенезе в том случае, когда разница между вместимостью черепа и объемом содержимого полости черепа будет составлять менее 2%.
В этой связи при значении ИН меньше 8% следует говорить об увеличении объема головного мозга, а при значении ИН и ИС меньше 2% - об опасном для жизни сдавлении головного мозга.
Расчет показателя относительной плотности головного мозга позволяет судить о преимущественно экстрацеллюлярном (отек)или интрацеллюлярном (набухание) накоплению жидкости в мозге. Известно, что относительная плотность головного мозга в норме составляет 1,030-1,041 (цит. по ). Поэтому если относительная плотность головного мозга имеет значение меньше 1,030, то можно говорить об её уменьшении, в частности при отеке головного мозга. Если значение относительной плотности головного мозга больше 1,041, то плотность органа увеличена, что может иметь место при набухании головного мозга.

ЛИТЕРАТУРА:

1. Автандилов Г.Г. Медицинская морфометрия. - М.: Медицина, 1990. - 384 с.
2. Арсени К. Патологическая анатомия центральной нервной системы после черепно-мозговой травмы /./ В кн.: Патоморфология нервной системы: Пер. с румын. - Бухарест: Медицинское издательство, 1963. - С.813-847.
3. Бакай Л., Ли Д. Отек мозга: Пер. с англ. - М.: Медицина, 1969."- 184 с.
4. Барон М.А-, Майорова Н.А. Функциональная стереоморфология мозговых оболочек. - М.: Медицина, 1982. - 352 с.
5. Березовский В.А., Колотилов Н.Н. Биофизические характеристики тканей человека. - Киев: Наукова думка. 1990. - 224 с.
6. Блинков С.М., Глезер И.И. Мозг человека в цифрах и таблицах. - Ленинград: Медицина, 1964. - 433 с.
7. Блинков С.М., Смирнов Н.А. Смещения и деформации головного мозга. Морфология и клиника. - Ленинград: Медицина, 1967. - - 203 с.
8. Громов А.П. Причины смерти при механических повреждениях // В кн.: Судебно-медицинская травматология. - М.: Медицина, 1977. - С. 21-30.
9. Квитницкий-Рьсков Ю.Н. Отек и набухание головного мозга. -Киев: Здоровья, 1978. - 184 с.
10. Квитницкий-Рыжов Ю.Н. Современное учение об отеке и набухании головного мозга. - Киев: Здоровья, 1988. - 184 с.
11. Мисюк Н.С., Евстигнеев В.В., Рогульченко С.У. Смещения и ущемления мозгового ствола. - Минск: Беларусь, 1968. - 124 с.
12. Отек головного мозга // Рассмотрение патофизиологических механизмов на основе системного подхода на 5-м Тбилисском симпозиуме по мозговому кровообращению. - Тбилиси: Мецниереба,1986,- - 174 с.
13. Сперанский В.С. Основы медицинской краниологии. - ; Медицина, 1988. - 288 с.
14. Сперанский В.С., Зайченко А.И. Форма и конструкция черепа. - М.: Медицина, 1980. - 280 с.
15. Тушевский В.Ф. Морфологические признаки аксиального смещения ствола мозга и механизмы его образования при процессах, ограничивающих внутричерепное пространство // Арх. патол. - 1965. - № 9.- С.45-51.
16. Хоминский Б.С. Нарушения водного обмена // Многотомное руков. по патол.анат. - М.: Медгиз, 1962. - Т.П. - С.94-108.

БОРОЗДЫ И ИЗВИЛИНЫ ГОЛОВНОГО МОЗГА, больших полушарий (sulci cerebri et gyri cerebri) - углубления (желобки) и лежащие между ними валики (складки), расположенные на поверхности полушарий (hemispheria) конечного мозга (telencephalon). Наличие борозд увеличивает поверхность коры больших полушарий головного мозга без увеличения объема черепа.

Насколько значительна роль борозд и извилин в увеличении поверхности коры показывает тот факт, что у человека 2/3 всей коры расположены в глубине борозд и только 1/3 - на свободной поверхности полушария. Относительно механизма возникновения борозд и извилин в процессе развития единого мнения не существует. Полагают, что полушария растут неравномерно в различных своих частях, вследствие чего и напряжение поверхности меняется в отдельных участках; в свою очередь это должно вести к образованию складок или извилин. Но, возможно, известную роль играет и первичный рост борозд, и, т.о., в какой-то мере извилины возникают вторично.

Эмбриология

Первой на 3-м мес. эмбрионального развития появляется боковая (сильвиева) ямка. Дно ее образует медленно растущая кора, к-рая в дальнейшем дает островок. Быстро растущие соседние области коры прикрывают его и образуют складки-покрышки. Линия их соприкосновения образует латеральную (сильвиеву) борозду. На 5-6-м мес. эмбрионального развития появляются центральная, теменно-затылочная и шпорные борозды. Вслед за ними в последующие месяцы развития образуются и остальные борозды и извилины. На основании сроков появления борозд и извилин в процессе развития, их глубины и постоянства Д. Н. Зернов выделил 3 вида борозд: первичные борозды - постоянные, глубокие, рано появляются в процессе онтогенеза; вторичные борозды, также постоянные, но более изменчивые по конфигурации, появляются в процессе онтогенеза позднее; третичные борозды, непостоянные, могут отсутствовать, очень изменчивы по форме, длине и направлению. Глубокими первичными бороздами каждое полушарие делится на доли: лобную (lobus frontalis), теменную (lobus parieta lis), височную (lobus temporalis), затылочную (lobus occipitalis) и островок (insula); некоторые авторы [П. Брока, Швальбе (G. А. Schwalbe)] выделяют еще лимбическую долю или область.

В больших полушариях головного мозга выделяют поверхностную (корковую) плащевую часть [мозговой плащ (pallium)] с расположенными на ней бороздами и извилинами. Мозговой плащ на основании филогенетического развития делится на древний (paleopallium), старый (archipallium) и новый (neopallium). Так наз. примитивные борозды, относящиеся к paleopallium и archipallium, в целом очень немногочисленные, намечены уже у рептилий. У млекопитающих борозды имеются и в neopallium.

Сравнительная анатомия

Изучение борозд коры головного мозга представителей различных отрядов млекопитающих показывает, что в их развитии имеется последовательность и что определенные системы борозд коры головного мозга приматов можно гомологизировать с известными системами борозд коры головного мозга хищных. Так, центральная борозда у приматов гомологична комплексу sulcus ansatus - sulcus coronalis у хищных, шпорная борозда у приматов - заднему отростку (processus acuminis) сплениальной борозды у хищных, ствол шпорной борозды у приматов - ретросплениальной борозде у хищных, теменно-затылочная борозда у приматов - среднему отделу сплениальной борозды у хищных, поясная борозда у приматов - комплексу передней части сплениальной борозды и генуальной борозды у хищных, верхняя височная борозда у приматов - среднему отделу сплениальной борозды у хищных, поясная борозда у приматов - комплексу передней части сплениальной борозды и генуальной борозды у хищных, верхняя височная борозда у приматов - заднему бедру супрасильвиевой борозды у хищных, верхняя часть циркулярной борозды островка у приматов - переднему бедру супрасильвиевой борозды у хищных, поперечные височные извилины у приматов - задней части дугообразных извилин у хищных и т. д. Однако отступлением от этой последовательности является закономерность, сформулированная Дарестом и Байярже (C.Dareste, J. G. F. Baillarger): в пределах одного и того же отряда у крупных его представителей кора головного мозга богата бороздами и извилинами (гирэнцефалы), а у мелких представителей - бедна бороздами и извилинами (лиссэнцефалы). Так, даже в ряду наиболее высоко стоящих в классе млекопитающих приматов есть лиссэнцефалы, напр, маленькая игрунка (Hapale). И, наоборот, в отряде сумчатых, аплацентарных, мозг которых лишен мозолистого тела, имеются гирэнцефалы, напр, кенгуру (Macropus).

Анатомия

В каждом полушарии различают верхне-латеральную, медиальную и нижнюю поверхности (рис. 1-4).

Рис. 1. Борозды и извилины верхнелатеральной поверхности коры левого полушария головного мозга (вид сбоку): 1 - gyrus angularis; 2 - gyrus occipitalis sup.; 3 - sulcus temporalis sup.; 4 - sulcus temporalis med.; 5 - gyrus temporalis sup.; 6 - gyrus temporalis med.; 7 - gyrus temporalis inf.; 8 n 10 - operculum frontoparietale; 9 - sulcus lateralis (ramus post.); 11 - polus temporalis; 12 - sulcus precentralis; 13 - ramus ant. sulci lateralis; 14 - sulci et gyri Orbitales; 15 - ramus ascendens sulci; 16 - operculum frontale; 17 - pars triangularis (BNA); 18 - sulcus frontalis inf.; 19 - gyrus frontalis med.; 20 - sulcus frontalis med.; 21 - gyrus frontalis sup.; 22 - sulcus frontalis sup.; 23 - gyrus precentralis; 24 - sulcus centralis; 25 - gyrus postcentralis; 26 - sulcus postcentralis; 27 - gyrus supramarginalis; 28 - sulcus interparietalis.

Рис. 2. Борозды и извилины медиальной поверхности коры левого полушария головного мозга: 1 - gyrus frontalis sup.; 2 - genu corporis callosi; 3 - uncus; 4 - gyrus parahippocampalis; 5 - splenium corporis callosi; 6 - sulcus collateralis; 7 - gyrus occipitotemporalis lat.; 8 - sulcus calcarinus; 9 - gyrus lingualis; 10 - cuneus; 11 - sulcus parietooccipitalis; 12 - precuneus; 13 - sulcus subparietalis; 14 - lobulus paracentralis; 15 - sulcus centralis; 16 - gyrus cinguli; 17 - sulcus cinguli; 18 - sulcus corporis callosi.

Рис. 3. Борозды и извилины верхне-латеральной поверхности коры левого полушария головного мозга (вид сверху): 1 - gyrus frontalis med.; 2 - gyrus frontalis sup.; 3 - sulcus frontalis med.; 4 - sulcus frontalis sup.; 5 - sulcus precentralis; 6 - gyrus precentralis; 7 - sulcus centralis; 8 - gyrus postcentralis; 9 - sulcus postcentralis; 10 - sulcus interparietalis; 11 - sulcus parietooccipitalis.

Рис. 4. Борозды и извилины нижней поверхности коры левого полушария головного мозга: 1 - gyrus frontalis sup.; 2 - bulbus olfactorius; 3 - gyrus frontalis med.; 4 - tractus opticus; 5 - sulcus orbitalis; 6 - gyrus frontalis inferior; 7 - sulcus lateralis; 8 - gyrus temporalis inf.; 9 - sulcus temporalis inf.; 10 - sulcus collateralis; 11 - gyrus occipitotemporalis lat.; 12 - gyrus lingualis; 13 - sulcus calcarinus; 14 - sulcus parietooccipitalis; 15 - gyrus parahippocampalis; 16 - sulcus rhinalis; 17 - uncus.

Верхне-латеральная поверхность полушария (facies superolateralis cerebri)

Самая большая и глубокая борозда на верхне-латеральной поверхности - латеральная (сильвиева) . У взрослого дно этой борозды очень широко и составляет особую долю больших полушарий головного мозга - островок. Латеральная борозда берет начало на основании мозга, по выходе на верхне-латеральную поверхность полушария делится на короткую, глубокую, направляющуюся прямо вперед переднюю ветвь (г. anterior), па направляющуюся кверху и также короткую восходящую ветвь (г. ascendens) и на заднюю ветвь (г. posterior), очень длинную, направляющуюся отлого кзади и кверху и разделяющуюся в заднем конце на восходящую и нисходящую ветви. Латеральная борозда отграничивает сверху височную долю, отделяя ее спереди от лобной доли, а сзади - от теменной.

Образующий дно латеральной борозды островок представляет собой выступ, вершина к-рого, направленная кнаружи и вниз, носит название полюса островка. Спереди, сверху и сзади островок отделен глубокой круговой бороздой (sulcus circularis insulae) от прилегающих частей лобной, теменной и височной долей, образующих покрышку (operculum). Покрышка разделяется, т. о., налобную, лобно-теменную и височную (operculum frontale, frontoparietale и temporale).

Поверхность островка делится косо идущей центральной бороздой островка (sulcus centralis insulae) на переднюю и заднюю дольки островка. В передней дольке островка перед центральной бороздой проходит прецентральная борозда (sulcus precentralis insulae), располагающаяся между ними извилина носит название передней центральной извилины островка (gyrus centralis anterior insulae).

Кпереди от прецентральной борозды располагаются радиально расходящиеся (две или три) короткие извилины островка (gyri breves insulae), отделяющиеся друг от друга короткими бороздами островка (sulci breves insulae). Задняя долька островка меньше, чем передняя; делится зацентральной бороздой островка (sulcus postcentralis insulae) на длинные извилины островка (gyri longi insulae). Самая нижняя часть островка образует полярную извилину островка (gyrus polaris insulae), или полюс островка. На основании мозга полюс островка переходит в порог островка (limen insulae), который продолжается кпереди в нижнюю лобную извилину.

Вторая большая борозда на верхне-латеральной поверхности полушария - центральная (роландова) борозда . Эта борозда прорезает верхний край полушария несколько кзади от середины его протяжения, немного заходит и на медиальную его поверхность. По латеральной поверхности она тянется вниз и вперед, немного не доходя внизу до латеральной борозды, и отделяет лобную долю от теменной. Кзади теменная доля примыкает к затылочной. Границу между ними образуют две борозды: вверху - теменно-затылочная борозда (sulcus parietooccipitalis), к-рая только частично заходит на верхне-латеральную поверхность полушария, в основном же располагается на медиальной его поверхности, внизу - поперечная затылочная борозда (sulcus occipitalis transversus), к-рая идет почти вертикально и большей частью соединяется с впадающей в нее под прямым углом межтеменной бороздой (sulcus interparietalis).

Лобная доля сзади ограничивается центральной бороздой, снизу - латеральной бороздой; передний ее отдел образует лобный полюс (polus frontalis). Впереди от центральной борозды и более или менее параллельно ей идут две прецентральные борозды: вверху верхняя прецентральная борозда (sulcus precentralis superior), внизу - нижняя прецентральная борозда (sulcus precentralis inferior). Они большей частью отделены друг от друга, но иногда соединяются между собой. Извилина, расположенная между центральной и прецентральной бороздами, носит название прецентральной извилины (gyrus precentralis). Внизу она переходит в покрышку и соединяется здесь с зацентральной извилиной (gyrus postcentralis) благодаря тому, что центральная борозда не достигает внизу латеральной борозды. Соединяется она с зацентральной извилиной и вверху, но только на медиальной поверхности полушария, в области парацентральной дольки.

От обеих прецентральных борозд отходят кпереди почти под прямым углом имеющие дугообразную форму лобные борозды: от верхней прецентральной борозды - верхняя лобная борозда (sulcus frontalis superior), а от нижней прецентральной борозды - нижняя лобная борозда (sulcus frontalis inferior). Этими бороздами выделяются три лобные извилины. Верхняя лобная извилина (gyrus frontalis superior) располагается кверху от верхней лобной борозды и заходит на медиальную поверхность полушария. Средняя лобная извилина (gyrus frontalis medius) располагается между верхней и нижней лобными бороздами и делится на верхнюю и нижнюю части средней лобной бороздой (sulcus frontalis medius). Средняя лобная борозда спереди соединяется с лобно-краевой бороздой (sulcus frontomarginalis). Выше лобно-краевой борозды передний край полушария прорезают орбитальные борозды (sulci Orbitales), впадающие на медиальной поверхности полушария в поясную борозду. Нижняя лобная извилина (gyrus frontalis inferior), располагающаяся под нижней лобной бороздой, делится на три части: 1) оперкулярную часть (pars opercularis), располагающуюся между нижним концом нижней прецентральной борозды и восходящей ветвью латеральной борозды; 2) треугольную часть (pars triangularis), расположенную между восходящей и передней ветвями латеральной борозды; 3) орбитальную часть (pars orbitalis), расположенную кпереди от передней ветви латеральной борозды.

Теменная доля спереди ограничивается центральной бороздой, снизу латеральной бороздой, сзади - теменно-затылочной и поперечной затылочной бороздами. Параллельно центральной борозде и кзади от нее идет зацентральная борозда (sulcus postcentralis), часто разделенная на верхнюю и нижнюю борозды. Между зацентральной и центральной бороздами располагается зацентральная извилина. Внизу она переходит, как и прецентральная извилина, в покрышку, а вверху (на медиальной поверхности полушария) - в парацентральную дольку. С зацентральной бороздой часто соединяется главная борозда теменной доли - межтеменная борозда (sulcus interparietalis). Она идет дугообразно назад, более или менее параллельно верхнему краю полушария, и оканчивается на границе с затылочной долей большей частью впадением в поперечную затылочную борозду. Межтеменная борозда делит теменную долю на верхнюю теменную дольку (lobulus parietalis superior) и на нижнюю теменную дольку (lobulus parietalis inferior).

Височная доля сверху ограничивается латеральной бороздой, а в заднем отделе - линией, соединяющей задний конец латеральной борозды с нижним концом поперечной затылочной борозды. Задняя граница височной доли проходит по линии, соединяющей теменно-затылочную вырезку с предзатылочной вырезкой. На наружной поверхности височной доли располагаются продольные височные борозды, более или менее параллельные латеральной борозде. Верхняя височная борозда (sulcus temporalis superior) сзади большей частью оканчивается, как и латеральная борозда, разветвлением, отдавая восходящую и нисходящую ветви. Восходящая ветвь входит в нижнюю теменную дольку и окружается здесь угловой извилиной (gyrus angularis). Средняя височная борозда (sulcus temporalis medius) большей частью состоит из следующих друг за другом 3-5 сегментов, так же как и нижняя височная борозда (sulcus temporalis inferior), к-рая гл. обр. лежит уже на нижней поверхности полушария. Височными бороздами выделяются три продольно расположенные височные извилины. Верхняя височная извилина (gyrus temporalis superior) располагается между латеральной бороздой и верхней височной бороздой. Средняя височная извилина (gyrus temporalis medius) располагается между верхней и средней височными бороздами. Нижняя височная извилина (gyrus temporalis inferior) лежит между средней и нижней височными бороздами и располагается только частью на наружной поверхности височной доли, частью же переходит на ее основание.

Верхняя поверхность височной доли, или верхней височной извилины, образует нижнюю стенку латеральной борозды и делится на две части: на большую - оперкулярную часть (operculum temporale), покрытую лобно-теменной покрышкой, и на меньшую - переднюю часть, инсулярную, которая покрывает островок. Оперкулярная часть имеет форму треугольника, в области к-рого располагаются веерообразно расходящиеся поперечные височные извилины (gyri temporales transversi), отделяющиеся друг от друга поперечными височными бороздами (sulci temporales transversi) (извилины Гешля). Первая поперечная височная извилина непрерывна, остальные представляют собой переходные извилины к располагающейся кнаружи и кзади от них гладкой височной плоскости (planum temporale).

Затылочная доля кзади оканчивается затылочным полюсом, спереди отграничена от теменной доли теменно-затылочной и поперечной затылочной бороздами, с височной долей не имеет естественной границы и отделяется от нее условной линией, проводимой приблизительно по продолжению вниз поперечной затылочной борозды в направлении к предзатылочной вырезке, представляющей собой вдавление на месте перехода верхне-латеральной поверхности полушария в нижнюю его поверхность. Борозды затылочной доли на верхне-латеральной поверхности полушария очень непостоянны и по количеству, и по направлению. Большей частью все же удается выделить ряд боковых затылочных извилин, из которых наиболее постоянной является верхняя затылочная извилина (gyrus occipitalis superior), расположенная над межзатылочной бороздой (sulcus interoccipitalis), составляющей продолжение кзади межтеменной борозды. В мосте перехода теменной доли в затылочную имеется несколько переходных извилин, которые соединяют обе доли друг с другом.

Медиальная поверхность полушария (facies medialis hemispherii)

Центральное место на медиальной поверхности занимают две концентрически расположенные борозды, окружающие мозолистое тело. Одна из них, непосредственно граничащая с мозолистым телом, называется бороздой мозолистого тела (sulcus corporis callosi) и сзади переходит в гиппокампову борозду (sulcus hippocampi), к-рая глубоко вдавливает стенку мозга и выпячивает ее в полость нижнего рога бокового желудочка в виде гиппокампа (аммонова рога). Над бороздой мозолистого тела идет также дугообразная поясная борозда (sulcus cinguli), а далее кзади - подтеменная борозда (sulcus subparietalis). На внутренней поверхности височной доли параллельно гиппокамповой борозде проходит ринальная борозда (sulcus rhinalis). Эти три борозды - поясная, подтеменная и ринальная - ограничивают дугообразную область, к-рая выделяется на основании единства функций (см. Лимбическая система) как лимбическая, краевая доля. Верхнюю ее часть, расположенную между бороздой мозолистого тела, поясной и подтеменной бороздами, обозначают как поясную извилину (gyrus cinguli), или верхнюю лимбическую (gyrus limbicus superior), а нижнюю ее часть, расположенную между гиппокамповой и ринальной бороздами,- как нижнюю лимбическую, или парагиппокампальную, извилину (gyrus parahippocampalis). Обе они сзади валика мозолистого тела соединяются друг с другом перешейком поясной извилины (isthmus gyri cinguli). Парагиппокампальная извилина образует в своем переднем отделе изгиб назад, представляя крючковидную извилину, или крючок (uncus). Небольшой задний конец его образует интралимбическую извилину (gyrus intralimbicus).

В задней части медиальной поверхности полушария расположены две очень глубокие борозды: теменно-за тылочная борозда (sulcus parietooccipitalis) и шпорная борозда (sulcus calcarinus). Теменно-затылочная борозда прорезает верхний край полушария на границе между затылочной и теменной долями и выходит на верхне-латеральную поверхность полушария. Главным образом она расположена на медиальной поверхности полушария, спускаясь здесь вниз навстречу шпорной борозде. Между теменно-затылочной бороздой и краевой частью (pars marginalis, BNA) поясной борозды располагается четырехугольная извилина, относящаяся к теменной доле и носящая название предклинья (precuneus). Шпорная борозда имеет продольное направление, идет вперед от затылочного полюса, где она часто распадается на верхнюю и нижнюю ветви и соединяется под углом с теменно-затылочной бороздой. В области заднего рога бокового желудочка шпорной борозде соответствует возвышение - птичья шпора (calcar avis). Продолжение шпорной борозды вперед от места соединения с теменно-затылочной бороздой носит название ее ствола. Ствол оканчивается под задним концом мозолистого тела и ограничивает снизу и сзади валиком перешеек поясной извилины (isthmus gyri cinguli). Между теменно-затылочной и шпорной бороздами лежит извилина, имеющая треугольную форму и обозначаемая как клин.

Поясная, или верхняя лимбическая, извилина окружает мозолистое тело (corpus callosum) - мощную спайку, соединяющую оба полушария. Кзади оно заканчивается валиком (splenium). Под мозолистым телом, прилегая сзади к его нижней поверхности, проходит в виде дуги свод - fornix (см.). Книзу свод переходит в хориоидную пластинку (lamina chorioidea), являющуюся также дериватом стенки конечного мозга, но максимально здесь редуцированную. Она покрывает сосудистое сплетение, вдающееся в полость боковых желудочков, и образует борозду (fissura chorioidea), онтогенетически очень раннюю. Между мозолистым телом и колонкой свода (columna fornicis) образуется треугольник, обращенный вершиной вниз и занятый прозрачной перегородкой (septum pellucidum) (см. Септальная область). От места соприкосновения ростральной пластинки мозолистого тела (rostrum corporis callosi) с колонкой свода отвесно вниз идет концевая пластинка (lamina terminalis), доходящая внизу до перекреста зрительных нервов. По своему происхождению она представляет переднюю стенку переднего мозгового пузыря между двумя выпячивающимися из него пузырями конечного мозга и ограничивает, т. о., спереди полость III желудочка.

Кпереди от концевой пластинки располагается параллельная ей околоконечная, или подмозолистая, извилина , а кпереди подмозолистая площадка, или параольфакторное поле , на к-ром описывают параольфакторные борозды (sulci parolfactorii).

Нижняя поверхность полушария

Нижнюю поверхность составляют в основном нижние поверхности лобной, височной и затылочной долей. Границу между лобной и височной долями образует выходящая на основании мозга латеральная борозда. На поверхности лобной доли проходит обонятельная борозда (sulcus olfactorius), к-рая занята обонятельной луковицей и обонятельным трактом; она глубока, впереди заходит за пределы обонятельной луковицы, а сзади разветвляется на медиальную и латеральную ветви. Между обонятельной бороздой и медиальным краем полушария располагается прямая извилина (gyrus rectus). Кнаружи от обонятельной борозды нижняя поверхность лобной доли покрыта очень изменчивыми по своей форме бороздками, которые чаще всего образуют сочетание в виде буквы «Н» и обозначаются как орбитальные борозды (sulci Orbitales). Поперечную борозду, образующую перекладину буквы «Н», называют поперечной орбитальной бороздой (sulcus orbitalis transversus), а отходящие от нее продольные бороздки - латеральной и медиальной орбитальными бороздами (sulci Orbitales lateralis et medialis). Располагающиеся между орбитальными бороздами извилины также носят название орбитальных (gyri Orbitales).

На нижней поверхности височной доли видна нижняя височная борозда (sulcus temporalis inferior), частично заходящая на наружную поверхность полушария.

Кнутри от нее и более или менее параллельно ей проходит коллатеральная борозда (sulcus collateralis), к-рой в области нижнего рога бокового желудочка соответствует коллатеральное возвышение (eminentia collateralis). Извилина, расположенная кнутри от коллатеральной борозды, между ней и шпорной бороздой, носит название язычковой извилины (gyrus lingualis).

Кровоснабжение, физиология борозд и извилин - см. Головной мозг , Кора головного мозга (больших полушарий).

Строение борозд и извилин - см. Архитектоника коры головного мозга (больших полушарий).

Библиография: Блинков С. М. Особенности строения большого мозга человека, с. 38, М., 1955; Воробьев В. П. Атлас анатомии человека, т. 5, с. 32, М.- JI., 1942; Зернов Д. Н. Индивидуальные типы мозговых извилин у человека, М., 1877; Кононова Ε. П. Мозг взрослого человека, в кн.: Атлас большого мозга человека и животных, под ред. С. А. Саркисова и И. Н. Филимонова, с. 96, М., 1937; Проблема борозд и извилин в морфологии мозга, под ред. Л. Я. Пинеса, Л., 1934; Филимонов И. Н. Борозды и извилины коры большого мозга, Многотомн, руководство по неврол., под ред. Н. PI. Гращенкова, т. 1, кн. 1, с. 452, М., 1955; он же, Борозды и извилины коры большого мозга млекопитающих, в кн.: Атлас большого мозга человека и животных, под ред. С. А. Саркисова и PI. Н. Филимонова, с. 9, М., 1937; Шевченко Ю. Г. Развитие коры мозга человека в свете онто-филогенетических соотношений, М., 1972; Glees P. Das menschliche Gehirn, Stuttgart, 1971; К a p-persC.U.A., HuberG.C. a, Crosby E. C. The comparative anatomy of the nervous system, v. 2, p. 1517, N. Y., 1936; M e y n e r t T. Der Bau der Gross-hirnrinde und seine ortlichen Verschieden-heiten nebst einem pathologisch-anatomi-schen Corollarium, Lpz., 1868: R e t z i u s G. Das Menschenhirn, Stockholm, 1896.

И. H. Филимонов, С. Б. Дзугаева.

Человеческий организм всяким образом стремится к энергоемкости и пластичности. Небольшой орган, выполняющий определенную функцию лучше, чем орган большой, исполняющий ту же функцию. На дороге эволюции мозг (как многофункциональная система) прогрессировал этим путем: он формировался и увеличивался благодаря сложной системе извилин и борозд. Таким образом, находясь внутри ограниченной в объеме черепной коробке, конечный мозг увеличивал свою площадь, сохраняя при этом весь набор функций.

Что это такое

Извилины головного мозга это небольшие возвышения над его поверхностью, ограниченные бороздами. Эти складки располагаются на территории всего конечного мозга, и площадь их составляет в среднем 1200 см3. О том факте, что функциональная поверхность увеличивается благодаря специфическим складкам, говорят цифры: большая часть (2/3) коры располагается между складками в глубинах впадин. Такому явлению, как образование извилин, существует объяснение: в процессе внутриутробного развития мозг младенца развивается неравномерно в разных местах, и, вследствие этого, напряжение поверхностей в разных отделах отличается.

Борозды головного мозга это своеобразные канавки, разделяющие извилины друг от друга. Эти образования классифицируют: первичные, вторичные и третичные. Первый тип углублений образуются самыми первыми в процессе формирования плода. Вторичные борозды появляются позже и являются постоянными. Третичные канавки изменчивы: борозды могут менять свою форму, направление и даже размер. Данные углубления разделяют поверхность больших полушарий на основные доли: теменную, височную, лобную, островковую и затылочную.

Строение

Схема извилин и борозд головного мозга лучше всего видна на схематических изображениях. Углубления, разделяющие кору на две части (полушария) называются первичными . Кроме этого, существуют и другие фундаментальные ограничители отделов коры, а именно:

  • Сильвиева борозда (латеральная, боковая): разделяет височную и лобную кору.
  • Роландова впадина (центральная): отделяет теменную от лобной.
  • Теменно-затылочная впадина: разграничивает затылочную и теменную долю мозга.
  • Поясная впадина, переходящая в гиппокампальную: отделяет поверхность обонятельного мозга от других отделов.

Эти структуры также носят и другое название: борозды первого порядка головного мозга.

Всякий отдел конечного мозга вмещает в себя несколько извилин, разделяющихся вторичными впадинами. Третичные же углубления развиваются сугубо индивидуально: их наличие зависит от личностных особенностей человека и его умственных способностей. Третий тип выемок придает индивидуальный рельеф складкам.

Верхнелатеральная часть полушария

Эта область конечного мозга ограничена тремя бороздами: латеральной, части затылочной и центральной. Боковая впадина берет свое начало от латеральной ямки. Развиваясь немного вверх и назад, образование заканчивается на верхнелатеральной поверхности.

На верхнем краю одного из полушария начинается центральная борозда. От его середины она идет кзади и частично вперед. Спереди от этой выемки располагается лобная доля мозга, а сзади – теменная кора.

Конец затылочной области служит краем теменной области. Эта канавка не имеет четкой границы, поэтому разделение осуществляется искусственно.

Медиальная поверхность мозга

Данная часть полушарий обладает постоянными глубокими бороздами. Говоря об образованиях медиальной поверхности, в первую очередь, как правило, вспоминают о борозде мозолистого тела (1). Выше этой канавки располагается поясная впадина (2), образующая колено и в последующем ветвь. Также в этой области находится гиппокампальная борозда (3) или борозда морского коня. Ближе к затылочной доле располагается коллатеральная борозда (4). На территории задней части срединной поверхности лежит шпорная борозда (5).

Между первыми двумя образованиями располагается опоясывающая извилина. А гиппокампальная и коллатеральная канавка ограничивает извилину, принадлежащую височной коре полушария.

Борозды и извилины нижней поверхности коры

Эта часть мозга распространяется на разных отделах коры – , затылочной и . Нижняя поверхность включает в себя следующие борозды:

  • Обонятельная (1)
  • Орбитальная (2)
  • Прямая (3)
  • Нижняя височная (4)

Эта область полушария не обладает выдающимися извилинами, однако, все же одну отметить следует – это язычковая извилина (5).

Функции борозд и извилин

Мозг – носитель различных функций. Но как же удалось создать такой орган, выполняющий огромное количество задач и, в целом, контролирующий всю жизнедеятельность сложноустроенного организма? Природа сделала так, что канавки увеличивают поверхность, площадь мозговой коры. Таким образом, основные борозды и извилины головного мозга выполняют функцию потенцирования задач коры, повышают количество выполняемых целей на единицу площади полушарий. Как было указано выше – преобладающая поверхность серого вещества скрывается на бороздах между извилинами.

Функции извилин головного мозга частично повторяют назначение канавок. Тем не менее, извилины, кроме увеличения площади, выполняют специфические функции, например:

  • височные извилины отвечают за восприятие и осмысление звуковой и письменной речи;
  • нижняя лобная извилина формулирует звуковую речь;
  • передняя центральная извилина формирует сознательные двигательные функции;
  • задняя центральная извилина отвечает за общее соматическое восприятие (тактильные, болевые, температурные ощущения).

Как и всякая часть тела, структуры мозга могут быть подвержены болезням и стойким патологиям. Различные методы исследования структуры конечного мозга могут показывать расширение борозд. Что это может значить – расширение борозд головного мозга у взрослого? Данные видоизменения могут отражать дистрофические процессы в мозгу, а именно: атрофия извилин. Когда последние уменьшаются в объеме, закономерным процессом является расширение мозговых впадин.