Все о печах и каминах - Информационный портал

Анализ мейоза. Определение и виды мейоза

Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений - Э.Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900). Изучение мейоза продолжается до сих пор.

Биологическое значение мейоза

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация - появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость - появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).

Мейоз (у высших растений), имеет место накануне цветения и приводит к образованию гаплоидного гаметофита, в котором позднее образуются гаметы.

Мейоз – осуществляется в клетках организмов, размножающихся половым путем.

Биологический смысл явления определяется новым набором признаков у потомков.

В данной работе рассмотрим сущность этого процесса и для наглядности представим его на рисунке, посмотрим последовательность и продолжительность деления половых клеток, а так же узнаем, в чем сходство и отличие митоза и мейоза.

Что такое мейоз

Процесс, сопровождающийся образованием четырех клеток с одинарным хромосомным набором из одной исходной.

Генетическая информация каждой новообразованной соответствует половине набора соматической клетки.

Фазы мейоза

Мейотичекое деление включает два этапа, состоящие из четырех фаз каждое.

Первое деление

Включает профазу I, метафазу I, анафазу I и телофазу I.

Профаза I

На данном этапе образуются две клетки с половинным набором генетической информации. Профаза первого деления включает несколько стадий. Ей предшествует предмейотическая интерфаза, во время которой идет репликация ДНК.

Затем происходит конденсация, образование длинных тонких нитей с протеиновой осью во время лептотены. Данная нить прикрепляется к мембране ядра с помощью концевых расширений – прикрепительных дисков. Половинки удвоенных хромосом (хроматиды) еще не различимы. При исследовании имеют вид монолитных структур.

Далее наступает стадия зиготены. Гомологи сливаются с образованием бивалентов, число которых соответствует одинарному числу хромосом. Процесс конъюгации (соединения) осуществляется между парными, сходными в генетическом и морфологическом аспекте. Причем взаимодействие начинается с концов, распространяясь вдоль тел хромосом. Комплекс из гомологов, связанных белковым компонентом – бивалент или тетрада.

Спирализация происходит во время стадии толстых нитей – пахитены. Здесь уже удвоение ДНК выполнено полностью, начинается кроссинговер. Это обмен участками гомологов. В результате формируются сцепленные гены с новой генетической информацией. Параллельно протекает транскрипция. Плотные участки ДНК – хромомеры — активируются, что приводит к изменению структуры хромосом по типу «ламповых щеток».

Гомологичные хромосомы конденсируются, укорачиваются, расходятся (исключая точки соединения — хиазмы). Это стадия в биологии диплотена или диктиотена. Хромосомы на данном этапе богаты РНК, которая синтезируется на этих же участках. По свойствам последняя близка к информационной.

Наконец, биваленты расходятся к периферии ядра. Последние укорачиваются, теряют ядрышки, становятся компактными, не связанными с ядерной оболочкой. Это процесс носит название диакинеза (перехода к делению клетки).

Метафаза I

Далее биваленты перемещаются к центральной оси клетки. От каждой центромеры отходят веретена деления, каждая центромера равноудалена от обоих полюсов. Небольшие по амплитуде движения нитей удерживают их в данном положении.

Анафаза I

Хромосомы, построенные из двух хроматид, расходятся. Происходит перекомбинация с уменьшением генетического разнообразия (в связи с отсутствием в наборе генов, расположенных в локусах (участках) гомологов).

Телофаза I

Суть фазы состоит в расхождении хроматид с их центромерами к противоположным участкам клетки. В животной клетке происходит цитоплазматическое деление, в растительной – образование клеточной стенки.

Второе деление

После интерфазы первого деления клетка готова ко второму этапу.

Профаза II

Чем длиннее телофаза, тем короче длительность профазы. Хроматиды выстраиваются вдоль клетки, образуя своими осями прямой угол относительно нитей первого мейотического деления. В эту стадию они укорачиваются и утолщаются, ядрышки подвергаются распаду.

Метафаза II

Центромеры вновь расположены в экваториальной плоскости.

Анафаза II

Хроматиды отделяются друг от друга, перемещаясь к полюсам. Теперь они носят название хромосом.

Телофаза II

Деспирализация, растяжение образованных хромосом, исчезновение веретена деления, удвоение центриолей. Гаплоидное ядро окружается ядерной мембраной. Формируются четыре новые клетки.

Таблица сравнения митоза и мейоза

Кратко и понятно особенности и отличия представлены в таблице.

Характеристики Мейотическое деление Митотическое деление
Число делений осуществляется в два этапа осуществляется в один этап
Метафаза после удвоения хромосомы расположены по центральной оси клетки парами после удвоения хромосомы расположены по центральной оси клетки одиночно
Слияние есть нет
Кроссинговер есть нет
Интерфаза нет удвоения ДНК в интерфазу II перед делением характерно удвоение ДНК
Итог деления гаметы соматические
Локализация в зреющих гаметах в соматических клетках
Путь воспроизведения половой бесполый

Представленные данные – схема отличий, а сходства сводятся к одинаковым фазам, редупликации ДНК и спирализации перед началом клеточного цикла.

Биологическое значение мейоза

Какова же роль мейоза:

  1. Дает новые сочетания генов вследствие кроссинговера.
  2. Поддерживает комбинативную изменчивость. Мейоз – источник новых признаков в популяции.
  3. Удерживает постоянное количество хромосом.

Заключение

Мейоз — сложный биологический процесс, в ходе которого образуются четыре клетки, с новыми признаками, полученными в результате кроссинговера.

Мейомз (от др.-греч. меЯщуйт -- уменьшение) или редукционное деление клетки -- деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом -- образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).

При мейозе происходит не только редукция числа хромосом до гаплоидного их числа, но происходит чрезвычайно важный генетический процесс - обмен участками между гомологичными хромосомами, процесс, получивший название кроссинговера.

Существует несколько разновидностей мейоза. При зиготном (характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др.), для которых в жизненном цикле преобладает гаплоидная фаза, две клетки - гаметы сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делиться, и образуется четыре гаплоидные клетки, которые продолжают размножаться.

Споровый тип мейоза встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В данном случае в органах размножения растений, образовавшиеся после мейоза гаплоидные клетки еще несколько раз делятся. Другой тип мейоза, гаметный, происходит во время созревания гамет - предшественников зрелых половых клеток. Он встречается у многоклеточных животных, среди некоторых низших растений.

В случае гаметного мейоза характерно при развитии организма выделение клонов герминативных клеток, которые впоследствии будут дифференцироваться в половые клетки. И только клетки этих клонов будут при созревании подвергаться мейозу и превращаться в половые клетки. Следовательно, все клетки развивающихся многоклеточных животных организмов можно разделить на две группы: соматические - из которых будут образовываться клетки всех тканей и органов, и герминативные, которые дадут начало половым клеткам.

Такое выделение герминативных клеток (гоноцитов) обычно происходит на ранних стадиях эмбрионального развития. Так, детерминация гоноцитов у рачка циклопа происходит уже на первом делении зиготы: одна из двух клеток дает начало герминальным клеткам. У аскариды герминативные клетки или клетки "зародышевого пути" (А.Вейсман) выделяются на стадии 16 бластомеров, у дрозофилы - на стадии бластоцисты, у человека - первичные половые клетки (гонобласты) появляются на 3-ей неделе эмбрионального развития в стенке желточного мешка в каудальном отделе эмбриона.

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • · Профаза I -- профаза первого деления очень сложная и состоит из 5 стадий:
  • · Лептотена или лептонема -- упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  • · Зиготена или зигонема -- происходит конъюгация -- соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  • · Пахитена или пахинема -- (самая длительная стадия) -- в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер -- обмен участками между гомологичными хромосомами.
  • · Диплотена или диплонема -- происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.
  • · Диакинез -- ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  • · Метафаза I -- бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • · Анафаза I -- микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
  • · Телофаза I -- хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • · Профаза II -- происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
  • · Метафаза II -- унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • · Анафаза II -- униваленты делятся и хроматиды расходятся к полюсам.
  • · Телофаза II -- хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Сущность мейоза — образование клеток с гаплоидным набором хромосом .

Мейоз состоит из двух последовательных делений.

Между ними не происходит репликации ДНК – поэтому и набор гаплоидный.

Благодаря этому процессу происходит:

  • гаметогенез;
  • с порообразование у растений;
  • и зменчивость наследственной информации

Теперь давайте поподробнее рассмотрим этот процесс.

Мейоз представляет собой 2 деления , следующих друг за другом.

В результате чего образуются как правило четыре клетки (за исключением например, где после первого деления, вторая клетка дальше не делится, а редуцируется сразу).

Здесь еще один важный момент: в результате мейоза как правило три клетки из четырех редуцируются, остается одна, то есть происходит естественный отбор . Это тоже одна из задач мейоза.

Интерфаза первого деления :

клетка переходит из состояния 2n2c в 2n4c , так как произошла репликация ДНК.

Профаза:

В первом делении происходит важный процесс – кроссинговер .

В профазе I мейоза , каждая из уже скрученных двухроматидных хромосом, унивалентов тесно сближается с гомологичной ей. Это называется (ну путать с конъюгацией инфузорий ), или синапсис . Пара сблизившихся гомологичных хромосом называется

Затем хроматида перекрещивается с гомологичной (несестренской) хроматидой на соседней хромосоме (с которой образован бивалент ). Места скрещивания хроматид называется . Хиазмы открыл в 1909 году бельгийский ученый Франс Альфонс Янсенс.

А потом кусочек хроматиды отрывается в месте хиазмы и перескакивает на другую (гомологичную т.е. несестренскую) хроматиду.

Произошла рекомбинация генов .

Результат: часть генов перекочевало с одной гомологичной хромосомы на другую.

До кроссинговера одна гомологичная хромосома обладала генами от материнского организма, а вторая от отцовского. А после обе гомологичные хромосомы обладают генами как материнского так и отцовского организма.

Значение кроссинговера таково: в результате этого процесса образуются новые комбинации генов, следовательно больше наследственная изменчивость, следовательно больше вероятность появления новых признаков, которые могут оказаться полезными.

Синапсис (конъюгация) при мейозе происходит всегда, а вот кроссинговер может и не произойти.

Из-за этих всех процессов: конъюгация, кроссинговер профаза I более продолжительна, чем профаза II.

Метафаза

Основное отличие первого деления мейоза от

в митозе по экватору выстраиваются двухроматидные хромосомы, а в первом делении мейоза биваленты гомологичных хромосом, к каждой из которых прикрепляются нити веретена деления .

Анафаза

из-за того, что по экватору выстроились биваленты , происходит расхождение гомологичных двухроматидных хромосом. В отличии от митоза , в котором расходятся хроматиды одной хромосомы.

Телофаза

Образовавшиеся клетки из состояния 2n4c становятся n2c , чем опять таки отличаются от клеток, образовавшихся в результате митоза : во-первых, они гаплоидны . Если в митозе по завершении деления образуются абсолютно идентичные клетки, то то в первом делении мейоза каждая клетка содержит только одну гомологичную хромосому.

Ошибки расхождения хромосом при первом деления могут повлечь за собой трисомию. То есть наличие в одной паре гомологичных хромосом еще одной хромосомы. Например у человека трисомия по 21 является причиной Синдрома Дауна.

Интерфаза между первым и вторым делением

— либо очень короткая, либо ее нет вовсе. Поэтому перед вторым делением не происходит репликация ДНК . Это очень важно, так как второе деление вообще нужно для того, чтобы клетки получились гаплоидные с однохроматидными хромосомами.

Второе деление

– происходит почти так же как митотическое деление. Только в деление вступают гаплоидные клетки с двухроматидными хромосомами (n2c), каждая из которых выстраивается по экватору, нити веретена деления прикрепляются к центромерам каждой хроматиды каждой хромосомы в метафазе II. В анафазе II хроматиды расходятся. И в телофазе II образуются гаплоидные клетки с однохроматидными хромосомами (nc ). Это необходимо, чтобы при слиянии с другой такой же клеткой (nc) образовалась «нормальная» 2n2c.