Все о печах и каминах - Информационный портал

Принцип измерения частоты при помощи частотомера. Частотомер - назначение, виды, особенности использования

В тематический план кружка 3-го года занятий надо включить изучение и конструирование устройств цифровой техники повышенной сложности, например цифрового частотомера.

Примером такого измерительного прибора может стать описываемый здесь пятиразрядный частотомер с цифровой индикацией результатов измерения, разработанный в радиокружке станции юных техников г. Березовский Свердловской области под руководством В. Иванова. Прибор позволяет измерять частоту электрических колебаний в пределах 100...99999 Гц и может быть использован для настройки различных генераторов, электронных часов, устройств автоматики. Амплитуда входного сигнала - 1...30 В.

Рис. 130. Структурная схема цифрового частотомера

Структурная схема частотомера показана на рисунке 130. Его основные элементы: формирователь импульсного напряжения сигнала fх измеряемой частоты, генератор образцовой (эталонной) частоты, электронный ключ, счетчик импульсов с блоком цифровой индикации и управляющее устройство, организующее работу прибора. Принцип его действия основан на измерении числа импульсов, поступающих на вход счетчика в течение строго определенного времени, равного в данном приборе 1 с. Этот необходимый измерительный интервал времени формируется в блоке управления.

Сигнал fх, частоту которого надо измерить, подают на вход формирователя импульсного напряжения. Здесь он преобразуется в импульсы прямоугольной формы, частота следования которых соответствует частоте входного сигнала. Далее преобразованный сигнал поступает на один из входов электронного ключа, А на второй вход ключа подается сигнал измерительного интервала времени, удерживающий его в открытом состоянии в течение 1с.

В результате на выходе электронного ключа, а значит, и на входе счетчика появляется пачка импульсов. Логическое состояние счетчика, в котором он оказывается после закрывания ключа, отображает блок цифровой индикации в течение интервала времени, устанавливаемого устройством управления.

Принципиальная схема частотомера показана на рисунке 131. Кроме транзисторов, в частотомере используют восемь цифровых микросхем серии К176 и пять (по числу разрядов) семисегментных люминесцентных индикаторов типа ИВ-6. В микросхему К176ИЕ12 (D1), предназначаемую специально для электронных часов, входит генератор (условный символ G), рассчитанный на совместную работу с внешним кварцевым резонатором Z1 на частоту 32 768 Гц. Делители частоты микросхемы делят частоту генератора до 1 Гц. Эта частота, формируемая на соединенных вместе выводах 4 и 7 микросхемы, и является в частотомере образцовой.

В микросхеме К176ЛЕ5 (D2) четыре логических элемента 2ИЛИ-НЕ, а в микросхеме К176ТМ1 (D3) -два D-триггера. Один из элементов 2ИЛИ-НЕ выполняет функцию электронного ключа (D2.4), а три других и оба D-триггера работают в устройстве управления.

Каждая из микросхем К176ИЕ4 (D4-D8) содержит декадный счетчик импульсов, т. е. счетчик до 10, и преобразователь (дешифратор) ее логического состояния в сигналы управления семи-сегментным индикатором. На выходах а-д этих микросхем формируются сигналы, обеспечивающие индикаторам Н1 - Н5 свечение цифр, значение которых соответствует логическому состоянию счетчиков. Микросхема D4 и индикатор H1 образуют младший счетный разряд, а микросхема D8 и индикатор Н5 - старший счетный разряд частотомера.

В конструкции прибора индикатор Н5 д6лжен быть крайним слева, а H1 - крайним справа.

Для питания микросхем, транзисторов и управляющих электродов индикаторов можно использовать две соединенные последовательно батареи 3336Л (GB1), а для питания нитей накала индикаторов - один элемент 343 или 373 (G1).

Формирователь импульсного напряжения образуют транзисторы V2-V5. Сигнал fx, поданный на его вход через гнездо X1, переключатель S1, конденсатор С1 и резистор R1, усиливается и ограничивается по амплитуде дифференциальным каскадом на транзисторах V2 и УЗ. С нагрузочного резистора R5 сигнал поступает на базу транзистора V4 второго каскада, работающего как инвертор. Резистор R8, создающий между этими каскадами положительную обратную связь, обеспечивает им триггерныи характер работы. При этом на коллекторе транзистора V4 формируются импульсы с крутыми фронтами и спадами, частота следования которых соответствует частоте исследуемого сигнала. Каскад на транзисторе V5 ограничивает напряжение импульсов до уровня, обеспечивающего микросхемам необходимый режим работы Далее преобразованный сигнал поступает на входной вывод 12 электронного ключа D2.4. Второй входной вывод ключа подключен к выходу формирователя измерительного интервала времени, равного 1 с. Поэтому число импульсов, прошедших за это время через электронный ключ к счетчику, высвечивается индикаторами в единицах Герц.

Рис. 132. Временные диаграммы, иллюстрирующие работу управляющего устройства частотомера

Работу управляющего устройства иллюстрируют временные диаграммы (рис. 132).

На вход С (вывод 11) триггера D3.2 непрерывно поступают импульсы генератора образцовой частоты (рис. 132,а), а на такой же вход триггера D3.1 - импульсы генератора запуска, собранного на логических элементах D2.1 и D2.2 (рис. 132, б). За исходный примем случай, когда оба триггера находятся в нулевом состоянии. В это время напряжение высокого уровня, действующее на инверсном выходе триггера D3.2, поступает на входной вывод 13 электронного ключа D2.4 и закрывает его. С этого момента через ключ прекращается прохождение импульсов сигнала измеряемой частоты на вход счетчика. С появлением на входе С триггера D3.1 импульса генератора запуска этот триггер принимает единичное состояние и напряжением высокого уровня на прямом выходе подготавливает триггер D3.2 к дальнейшей работе. Одновременно на выводе 9 элемента D2.3, соединенном с инверсным выходом триггера D3.1, появляется напряжение низкого уровня. Очередной импульс генератора образцовой частоты переключает триггер D3.2 в единичное состояние. Теперь на его инверсном выходе и на выводе 13 элемента D2.4 будет напряжение низкого уровня, которое открывает электронный ключ и тем самым разрешает прохождение через него импульсов сигнала измеряемой частоты.

Прямой выход триггера D3.2 (вывод 13) соединен с R-входом (вывод 4) триггера D3.1. Следовательно, когда триггер D3.2 оказывается в единичном состоянии, он, воздействуя напряжением высокого уровня на прямом выходе переключает триггер D3.1 в нулевое состояние. Этот триггер находится в нулевом, состоянии до тех пор, пока сохраняется интервал измерительного времени. Очередной импульс генератора образцовой частоты на входе С триггера D3.2 переключает его в нулевое состояние и напряжением высокого уровня на инверсном выходе закрывает электронный ключ. В результате прекращается прохождение импульсов сигнала измеряемой частоты к счетчику и начинается цифровая индикация результатов измерения (рас 132,(5, ж).

Каждому интервалу измерительного времени предшествует появление на выводах 5 R-входов микросхем D4-D8 кратковременного импульса положительной полярности (рис. 132, г), сбрасывающего триггеры счетчика в нулевое состояние. С этого момента и начинается цикл счет - индикация работы частотомера. Формирование импульсов сброса происходит на выходе логического элемента D2.3 в моменты совпадения на его входах напряжений низкого уровня. Время индикации можно плавно изменять в пределах 2...5 с резистором R17 генератора импульсов запуска.

Светодиод V7 в коллекторной цепи транзистора V6, работающего в режиме ключа, служит для визуального наблюдения, за длительностью времени индикации.

В частотомере предусмотрена возможность контроля его работоспособности. Для этого переключатель S1 переводят в положение «Контроль», при котором входная цепь прибора оказывается соединенной с выводом 14 микросхемы D1 генератора образцовой частоты. При исправной работе частотомера индикаторы должны высвечивать частоту 32 769 Гц.

Рис. 133. Внешний вид частотомера

Внешний вид описанного частотомера показан на рисунке 133. Через удлиненное прямоугольное отверстие в лицевой стенке корпуса, прикрытое пластинкой зеленого органического стекла, хо-
рошо видны светящиеся цифры индикаторов. Слева от отверстия расположен «глазок» светодиодного индикатора V7. Под ним находится переменный резистор R17 установки длительности индикации результата измерения и входное гнездо X1. Слева от них -выключатель питания S2 («Я») и двухсекционный переключатель S1 «Измерение-контроль». При нажатии на кнопку «K» (контроль) вход формирователя импульсного напряжения подключается к генератору образцовой частоты, а при нажатии на кнопку «И» (измерение) - к входному гнезду X1.

Другие детали частотомера смонтированы на двух печатных платах размерами 115X60 мм, выполненных из фольгированного стеклотекстолита толщиной 1 мм. На одной из них (рис. 134, а) находятся детали формирователя импульсного напряжения, генератора образцовой частоты и устройства управления, на другой (рис 134, б)-микросхемы D4-D8 и цифровые индикаторы H1- Н5. Все постоянные резисторы типа МЛТ. Подстроечный резистор R3 - СПЗ-16, переменный R17 может быть любого типа. Оксидные конденсаторы СЗ и С5- К50-6 или К53-1А, неполярные С1 и С8 - К53-7 (можно заменить наборами конденсаторов типа К73-17). Конденсаторы С2, С4 могут быть типа КЛС или К73-17, С6 - керамический КТ-1, КМ, подстроечный конденсатор С7- КПК-МП. Переключатель S1 «Измерение-контроль» образуют два кнопочных переключателя П2К с зависимой фиксацией в нажатом положении; выключатель питания S2 - тоже П2К, но без фиксации, т. е. с возвратом в исходное положение при повторном нажатии на кнопку.

Микросхему К176ИЕ12 можно заменить на подобную ей микросхему К176ИЕ5, скорректировав соответственно печатные проводники монтажной платы. Цифровые индикаторы могут быть типа ИВ-3А (вместо ИВ-6), но тогда в цепь питания их нитей накала надо будет включить резистор сопротивлением 2 Ом на мощность рассеяния 0,5 Вт.

Налаживание безошибочно смонтированного частотомера сводится в основном к установке наилучшей чувствительности формирователя импульсного напряжения и, если надо, к подстройке генератора образцовой частоты. При установке необходимой чувствительности на вход частотомера подают от генератора 34 сигнал с амплитудой 1 В, к выходу электронного ключа D2.4 подключают осциллограф и подстроечный резистором R3 добиваются появления на экране осциллографа пачек импульсов. Подстройку образцовой частоты генератора производят: грубо - подбором конденсатора С6, точно - подстроечный конденсатором С7. Точность настройки контролируют по образцовому частотомеру, подключенному к выводу 14 микросхемы D1.

Измерение частоты при помощи вольтметра

Наиболее простым является косвенный способ измерения частоты, основанный на зависимости сопротивления реактивных элементов от частоты, протекающего по ним тока. Возможная схема измерений представлена на рис. 1.

Рис. 1.

К источнику колебаний частоты Fx подключается цепочка из безреактивного резистора R и конденсатора С с малыми потерями, параметры которых точно известны. Высокоомным вольтметром переменного тока V с пределом измерения, близким к значению входного напряжения, поочерёдно измеряются напряжения UR и UC на элементах цепочки. Поскольку

где I - ток в цепи, то отношение

UR/UC = 2рFxRC,

Fx = 1/(2рRC) * UR/RC

Входное сопротивление вольтметра V должно, по крайней мере, в 10 раз превышать сопротивление каждого из элементов цепочки. Однако влияние вольтметра можно исключить, если использовать его лишь в качестве индикатора равенства напряжений UR и UC, достигаемого, например, плавным изменением сопротивления R. В этом случае измеряемая частота определяется простой формулой:

Fx = 1/(2рRC) ? 0,16/(RC),

и при неизменной ёмкости конденсатора С переменный резистор R можно снабдить шкалой с отчётом в значениях Fx.

Оценим возможный порядок измеряемых частот. Если резистор R имеет максимальное сопротивление RM = 100 кОм, то при С = 0,01 мкФ, 1000 и 100 пФ верхний предел измерений составит соответственно 160, 1600 и 16000 Гц. При выборе RM = 10 кОм и тех же значениях ёмкостей эти пределы окажутся равными 1600 Гц, 16 и 160 кГц.

Эффективность метода зависит от точности подбора номиналов и качества элементов RС-цепочки.

Ёмкостные частотомеры

Для практических целей наиболее удобны прямопоказывающие частотомеры, позволяющие вести непрерывные наблюдения за частотой исследуемых колебаний по шкале стрелочного измерителя.

К ним относятся, прежде всего, ёмкостные частотомеры, действие которых основано на измерении среднего значения тока заряда или разряда опорного конденсатора, периодически перезаряжаемого напряжением измеряемой частоты f x . Эти приборы применяются для измерения частот от 5-10 Гц до 200-500 кГц.

При допустимой погрешности измерений примерно 3-5% они могут быть выполнены по простым схемам, один из вариантов которых представлен на рис. 2. Здесь транзистор Т1, работающий в ключевом режиме, управляется напряжением частоты f x , которое подводится к его базе с входного потенциометра R1. В отсутствие входного сигнала транзистор Т1 открыт, поскольку его база через резисторы R3 и R2 соединена с отрицательным полюсом источника питания.

При этом на резисторе R5 делителя R5, R2 создаётся падение напряжения U; последнее благодаря наличию конденсатора большой ёмкости С2 фиксируется в качестве напряжения питания транзисторного каскада и при быстрых периодических изменениях режима транзистора почти не меняется. При установке переключателя В в положение «U-» измеритель И, включённый последовательно с добавочным резистором R6, образует вольтметр, измеряющий постоянное напряжение U на конденсаторе С2, которое с помощью подстроечного резистора R2 поддерживается на определённом уровне, например 15 В.


Рис. 2.

В положительный полупериод входного напряжения частоты f x транзистор Т1 закрывается и напряжение на его коллекторе резко возрастает до значения U; при этом происходит быстрый заряд до напряжения, близкого к U, одного из конденсаторов С, зарядный ток которого протекает через измеритель И и диод Д2. В отрицательный полупериод транзистор Т1 открывается, его сопротивление становится очень малым, что приводит к быстрому и почти полному разряду конденсатора С током, протекающим через диод Д1. За один период измеряемой частоты количество электричества, сообщаемое конденсатору при заряде и отдаваемое им при разряде, q ? CU. Поскольку процесс заряда - разряда повторяется с частотой f x , то среднее значение I зарядного тока, регистрируемое измерителем И , оказывается пропорциональным этой частоте:

I = q*f x ? C*U*f x

Электронно-счётные (цифровые) частотомеры

Электронно-счётные частотомеры по своим возможностям являются универсальными приборами. Их основное назначение - измерение частоты непрерывных и импульсных колебаний, осуществляемое в широком частотном диапазоне (примерно от 10 Гц до 100 МГц) при погрешности измерений не более 0,0005%. Кроме того, они позволяют измерять периоды низкочастотных колебаний, длительности импульсов, отношения двух частот (периодов) и т. д.

Действие электронно-счётных частотомеров основано на дискретном счёте числа импульсов, поступающих за калиброванный интервал времени на электронный счётчик с цифровой индикацией. На рис. 4 приведена упрощённая функциональная схема прибора. Напряжение измеряемой частоты f x в усилительно-формирующем устройстве преобразуется в последовательность однополярных импульсов, повторяющихся с той же частотой f x . Для этой цели часто используется система из усилителя-ограничителя и триггера Шмитта, дополненная на выходе дифференцирующей цепочкой и диодным ограничителем. Временной селектор (электронный ключ с двумя входами) пропускает эти импульсы на электронный счётчик лишь в течение строго фиксированного интервала времени Дt, определяемого длительностью прямоугольного импульса, воздействующего на его второй вход. При регистрации счётчиком m импульсов измеряемая частота определяется формулой:

Например, если за время Дt = 0,01 с отмечено 5765 импульсов, то f x = 576,5 кГц.

Колебания выбранной (посредством переключателя В2) частоты f 0 (числовое значение последней является множителем к отсчёту по счётчику) с помощью триггера Шмитта преобразуются в прямоугольные колебания с частотой повторения f 0 . Под их действием в управляющем устройстве формируется интервальный импульс длительностью строго прямоугольной формы.

Дt = Т 0 = 1/f 0

Этот импульс вызывает сброс предыдущих показаний счётчика, а затем (с задержкой на несколько микросекунд) поступает на селектор и открывает его на время Дt для пропускания импульсов с частотой повторения f x .

После закрывания селектора число пропущенных им импульсов m фиксируется индикатором счётчика, а измеряемая частота определяется по формуле


Рис. 3. Упрощённая функциональная схема электронно-счётного (цифрового) частотомера

Кварцевые калибраторы

Из приборов повышенной точности, применяемых для измерения высоких частот, самыми простыми являются кварцевые калибраторы.

Они позволяют проверять шкалы радиоприёмных и радиопередающих (генераторных) устройств в ряде точек, соответствующих строго определённым (опорным) частотам.


Рис. 4.

Функциональная схема кварцевого калибратора приведена в наиболее полном варианте на рис. 4. Основным компонентом прибора является кварцевый генератор, работающий в таком режиме, что возбуждаемые им колебания имеют форму, резко отличную от синусоидальной, и потому содержат, кроме составляющей основной частоты f 0 , большое число гармоник, частоты которых равны 2f 0 , 3f 0 , 4f 0 и т. д., а амплитуды постепенно убывают с повышением частоты. Обычно удаётся использовать для измерений от десятков до нескольких сотен гармоник, которые имеют такую же высокую стабильность (обычно в пределах 0,01 - 0,001%), как и частота f 0) стабилизированная кварцевым резонатором (кварцем) в условиях отсутствия специальных устройств (например, термостатов), повышающих эффект стабилизации.

Колебания, возбуждаемые кварцевым генератором, подводятся к гнезду (или зажиму) связи Ан, который вместе с присоединённым к нему небольшим проводником или штырём играет роль приёмной или передающей антенны в зависимости от характера использования прибора. С целью экранировки прибор обычно помещают в металлический кожух.

Гетеродинные частотомеры

Гетеродинные частотомеры применяются для точных частотных измерений в плавном диапазоне высоких частот. В принципе гетеродинный частотомер отличается от кварцевого калибратора, лишь тем, что вместо кварцевого генератора в нем используется гетеродин, т. е. маломощный генератор с плавно регулируемой частотой настройки. Наличие смесителя позволяет использовать прибор не только для градуировки частотных шкал радиоприёмников, но и для измерения методом нулевых биений частоты генераторов. Индикация нулевых биений осуществляется телефонами, осциллографическими и электронно-световыми индикаторами, а также стрелочными измерителями.

Погрешность измерений гетеродинного частотомера в основном определяется стабильностью частоты гетеродина и погрешностью её установки. Поэтому часто предпочитают гетеродины выполнять на электронных лампах. Повышению стабильности частоты способствуют правильный выбор схемы и конструкции гетеродина, применение в нем деталей с малым температурным коэффициентом, включение буферного каскада между гетеродином и выходными цепями, стабилизация напряжений питания, длительный прогрев прибора под током перед измерениями. Для повышения плавности регулировки и точности установки частоты управление конденсатором настройки гетеродина обычно осуществляют через верньерный механизм с большим замедлением (до 100-300 раз). Непосредственный отсчёт частоты по шкале конденсатора переменной ёмкости производят лишь в самых простых конструкциях; в большинстве приборов шкала выполняется равномерной с очень большим числом делений (до нескольких тысяч), а отсчёт по ней переводится в частоту при помощи таблиц или графиков.

Резонансные частотомеры

Особенностями резонансных частотомеров, применяемых для измерения высоких и сверхвысоких частот, являются простота конструкции, быстрота функционирования и однозначность результатов измерений; погрешность измерений составляет 0,1-3%.

Принцип действия резонансных частотомеров основан на сравнении частоты входного сигнала с собственной резонансной частотой перестраиваемого резонатора. В качестве резонатора может быть использован колебательный контур, отрезок волновода (объемный резонатор) или четвертьволновой отрезок линии. Контролируемый сигнал через входные цепи поступает на резонатор, с резонатора сигнал через детектор подается на индикаторное устройство (гальванометр). Для повышения чувствительности в некоторых частотомерах применяются усилители. Оператор настраивает резонатор по максимальному показанию индикатора и по лимбу настройки отсчитывает частоту.

Измерение частоты с помощью осциллографа

Измеряемая частота может быть определена сравнением её с известной опорной частотой f o . Такое сравнение чаще всего производится с помощью электроннолучевого осциллографа или методами биений.

Электроннолучевые осциллографы применяются для измерения частот колебаний главным образом синусоидальной формы в диапазоне частот примерно от 10 Гц до значения, определяемого верхней границей полосы пропускания каналов отклонения; погрешность измерений практически равна погрешности калибровки источника колебаний (генератора) опорной частоты f 0 . Чаще всего измерения проводят при выключенной развёртке осциллографа, пользуясь схемой соединений, показанной на рис. 5. Напряжения измеряемой и известной частот подводят непосредственно или через усилители к различным парам отклоняющих пластин ЭЛТ (в зависимости от того, на какой вход осциллографа эти напряжения воздействуют, будем обозначать их частоты через f x и f y). Если эти частоты относятся друг к другу как целые числа, например 1:1, 1:2, 2:3 и т. п., то перемещение электронного луча приобретает периодический характер и на экране наблюдается неподвижное изображение, называемой фигурой Лиссажу. Форма этой фигуры зависит от соотношения амплитуд, частот и начальных фаз сравниваемых колебаний.


Рис. 5.

Рис. 6. Фигуры, наблюдаемые на экране при различных отношениях частот f x /f y

Определив отношение f x:f y и зная одну из частот, например f y , легко найти вторую частоту.

Предположим, что при известной частоте f y = 1000 Гц на экране получена фигура, изображённая на рис. 5. Из приведённого на чертеже построения видно, что эта фигура соответствует отношению частот f x = 3:4, откуда f x = 750 Гц.

Одним из основных параметров периодических и пульсирующих токов выступает , определяющая количество периодических колебаний за полный цикл и являющая основной характеристикой системы единиц СИ. Потребность в точном определении частоты возникает в различных сферах научной и практической деятельности, особое значение её определение имеет в электротехнике, радиоэлектронике, телекоммуникациях и пр.

Для фиксации частоты используют частотомеры – это специальные электроизмерительные приборы, использующиеся для фиксации частоты периододического процесса либо гармонических составляющих спектра сигнала.

Классификация приборов

Исходя из метода измерений, приборы бывают непосредственной оценки (аналоговые) и устройства сравнения (гетеродинные, электронно-счетные).

В целях определения частоты источников питания радиоустройств используют:

  • электромагнитные;
  • электро- и ферродинамические, использующие метод сопоставления с некой измерительной шкалой;
  • камертонные приборы.

Такие устройства характеризуются узкими пределами измерений, стандартно в диапазоне +-10% одной из стандартного ряда частот 25, 50, 60, 100, 150, 200, 300, 400, 430, 500, 800, 1000, 1500 и 2400 Гц, и функционируют при номиналах напряжения 36, 110, 127, 220, 380 В.

Для подсчета предельно низких частот (менее 5 Гц) используют магнитоэлектрические приборы в комплекте с секундомером. Для этого путем подсчета количества периодов колебаний за определенный временной промежуток, проводится полное измерение.


Помимо этого, все частотомеры условно разделяют на аналоговые и цифровые приборы. Для первого вариант измеренные сведения указываются стандартным «шкально-стрелочным» методом, а во втором – посредством цифрового дисплея.

По конструктивному исполнению их делят на:

  • щитовые;
  • переносные;
  • стационарные.

Цифровые частотомеры - довольно распространенные измерительные приборы, используемые в самых различных отраслях науки, техники, промышленности для оценки частотно-временных параметров электрических сигналов. Они работают в очень широком диапазоне значений измеряемых частот периодических сигналов (или их периода).

Современные цифровые частотомеры обеспечивают самые высокие метрологические характеристики (точность и разрешающую способность) среди всех прочих ЦИП, отличаются достаточно высоким быстродействием, широкими функциональными возможностями, простотой эксплуатации, высокой надежностью.

Помимо измерения частотно-временных параметров периодических сигналов, современные цифровые частотомеры применяются и для измерения различных физических величин. Для этого необходимо подключать к ним вспомогательные первичные измерительные преобразователи (датчики), имеющие выходные сигналы, частота или период (длительность) которых пропорциональны измеряемой величине. Например, цифровые частотомеры можно использовать для измерения скорости вращения вала двигателя , расхода жидкости в трубопроводе, скорости потока воздуха . Они также находят применение в качестве генераторов стабильных частот и таймеров , постоянных или программируемых интервалов времени . Кроме того, с помощью цифровых частотомеров можно легко организовать подсчет числа импульсов (числа событий).

Практически все цифровые частотомеры обеспечивают два основных режима работы: измерения частоты и измерения периода (длительности интервала времени).

Режим измерения частоты . Упрощенная структура цифрового частотомера, реализующая режим измерения частоты , показана на (рис. 8.22 а ), а временные диаграммы работы в этом режиме приведены на (рис. 8.22 б ). Исследуемый периодический сигнал 1 (соответственно диаграмма 1) подается на вход усилителя -ограничителя УО , где преобразуется в последовательность прямоугольных импульсов 2 (диаграмма 2) фиксированной амплитуды , частота которых равна частоте f x входного сигнала . Далее этот сигнал поступает на вход электронного ключа , которым управляет таймер, периодически замыкающий его на постоянный стабильный интервал времени 3 (диаграмма 3), например T 0 = 1c . Сформированная таким образом серия импульсов 4 (диаграмма 4) поступает на вход счетчика Сч , содержимое которого 5 в начале интервала T 0 равно нулю , а в конце интервала счета равно числу поступивших импульсовN x . Это число прямо пропорционально измеряемой частотеf x входного сигнала;

N x = Ent [T 0 /T x ] = Ent [T 0 f x ],

где Ent [...] - [...];T x - период входного сигнала (T x = 1/f x ); f x - частота входного сигнала .

Содержимое счетчика 5 запоминается в буферном запоминающем устройстве ЗУ и хранится там до окончания следующего цикла измерения и переписи нового результата . Одновременно результат поступает на цифровое отсчетное устройство (индикатор Ин ). Если, например, в течение интервала T 0 = 1c на вход счетчика поступило 254 импульса, то, следовательно, частота входного сигнала f x = 254Гц . Прибор работает циклически , т.е. в начале каждого нового цикла счетчик обнуляется . Таким образом, результат измерения периодически обновляется. Отметим, что форма периодического сигнала значения не имеет.

В реальных цифровых частотомерах имеется несколько диапазонов измерения частоты, т.е. формируется несколько различных по длительности стабильных интервалов T 0 (например, T 01 = 0,1c ; T 02 = 1.0c ; T 03 = 10c ). При работе с цифровым частотомером в режиме измерения частоты важным является правильный выбор диапазона, т.е. выбор интервала T 0 , в течение которого происходит подсчет импульсов. Чем больше импульсов N x поступит в счетчик (в пределах, конечно, максимально возможного) на интервале T 0 , тем больше будет значащих цифр результата измерения на индикаторе, тем, следовательно, лучше. Общая погрешность F f x складывается из двух составляющих: погрешности дискретности F 1 и погрешности ∆ F 2 , вызванной неточностью (неидеальностью) задания интервала времениT 0 .

Погрешность дискретности F 1 неизбежно присутствует в любом аналого -цифровом преобразовании . Отношение T 0 /T x может быть любым, так как частота входного сигнала может иметь бесконечное множество различных значений. Понятно, что в общем случае отношение T 0 /T x - дробное число . А поскольку число импульсов N x , подсчитываемых счетчиком, может быть только целым , то в процессе такого автоматического округления возникает погрешность дискретности .

При одном и том же постоянном значении интервала T 0 , в зависимости от расположения (случайного) во времени входного сигнала и интервала T 0 , число импульсов, приходящихся на интервал T 0 , может отличаться в ту или другую сторону на единицу . Две разные ситуации при одинаковых исходных условиях показаны на (рис. 8.23, а ): в первом случае (диаграмма 1) число импульсов, поступивших в счетчик, равно пяти, а во втором (диаграмма 2) случае число импульсов равно шести.

Погрешность ∆ F 1 - случайная величина , поскольку входной сигнал и сигнал таймера не связаны между собой . Максимально возможное значение этой погрешности неизменно и составляет одну единицу младшего разряда - один квант:

F 1 = ±1 импульс = ±1/T 0 .

Таким образом, ∆ F 1 - это аддитивная погрешность , т.е. не зависящая от значения измеряемой величины - частоты f x (рис. 8.23 б ).

Погрешность ∆ F 2 , вызванная неточностью (неидеальностью) задания интервалаT 0 , показана на (рис. 8.24 а ). Если бы длительность интервала T 0 имела строго номинальное значение , то число импульсов, поступивших в счетчик, было бы равно N 1 (см. рис. 8.24 а ). Если же интервал T 0 будет несколько больше номинального и составит T 0 + ∆T 0 , то при той же измеряемой частоте f x на счетчик поступит больше импульсов: N 2 > N 1 (см. рис. 8.24 б ).

Неточность ∆T 0 задания этого интервала приводит к появлению мультипликативной , т.е. линейно зависящейот значения измеряемой частотыf x , составляющей:

F 2 = ±f x T 0 /T 0 .

Суммарная абсолютная погрешность F результата измерения частоты f x и суммарная относительная погрешность δ F , %, соответственно;

F = ∆ F 1 + ∆ F 2 = ±;

δ F = δ F 1 + δ F 2 = ±.

Графическая иллюстрация поведения составляющих и суммарных абсолютной и относительной погрешностей результата измерения частоты f x приведена на (рис. 8.25 а и 8.25 б ) соответственно.

Рассмотрим пример определения погрешностей результата измерения частоты. Предположим, известны значения интервала T 0 = 1c и возможная погрешность его задания ∆T 0 = ±2мс . Получен результат измерения частоты f x = 1кГц .

Значения абсолютных аддитивной ∆ F 1 и мультипликативной ∆ F 2 погрешностей соответственно, Гц :

F 1 = ±1/T 0 = ±1; f x T 0 /T 0 = ±1000210 ‒3 / 1 = ±2.

Значения относительных аддитивной δ F 1 , и мультипликативной δ F 2 погрешностей, %, определим обычным образом:

δ F 1 = (∆ F 1 /f x )100 = ±(1/ 1000)100 = ±0,1;

δ F 2 = (∆ F 2 /f x )100 = ±(2/ 1000)100 = ±0,2.

Суммарные абсолютная ∆ F Гц , и относительная δ F %, погрешности результата измерения частоты f x соответственно:

F = ∆ F 1 + ∆ F 2 = ±3;

δ F = δ F 1 + δ F 2 = ±3.

Режим измерения периода . Упрощенная структура цифрового частотомера в режиме измерения периода приведена на (рис. 8.26 а ), а временные диаграммы - на (рис. 8.26 б ). В этом режиме входной периодический сигнал 1 (соответственно диаграмма 1) любой формы подается на вход формирователя периода ФП , где преобразуется в прямоугольный сигнал 2 (диаграмма 2) фиксированной амплитуды , длительность которого T x равна периоду входного сигнала .

Далее этот сигнал поступает на управляющий вход электронного ключа и замыкает его на время T x . На входе электронного ключа - прямоугольные импульсы 3 (диаграмма 3) стабильной известной частоты F 0 , постоянно поступающие с выхода генератора тактовых импульсов ГТИ . Таким образом, на выходе ключа формируется серия прямоугольных импульсов 4 (диаграмма 4), в которой число импульсов N x пропорционально длительности T x :

N x = Ent [T x /T 0 ] = Ent [T x F 0 ],

где Ent [...] - оператор определения целой части выражения [...]; T 0 - период тактовых импульсов .

Эта серия подается в запоминающее устройство ЗУ, где и хранится до окончания следующего цикла и переписи нового результата.

Индикатор Ин позволяет считывать результат измерения. Если, например, частота импульсов генератора тактовых импульсов была установлена F 0 = 1кГц , а содержимое счетчика Сч в конце интервала счета оказалось равным N x = 1520, то период входного сигнала T x = 1,52c .

И в этом режиме цифровой частотомер работает циклически , т.е. в начале каждого нового цикла преобразования счетчик обнуляется . Таким образом, результат измерения периодически обновляется.

Обычный цифровой частотомер имеет высокочастотный стабильный генератор тактовых импульсов и цифровой делитель частоты, с помощью которого формируется несколько разных тактовых частот F 0 (например, F 01 = 1.0кГц ; F 02 = 10кГц ; F 03 = 100кГц ; F 04 = 1,0МГц ), что означает наличие нескольких возможных диапазонов измерения периода.

Погрешность T результата измерения периода (интервала времени) T x , как и в режиме измерения частоты, содержит две составляющие: погрешность дискретности ∆ T 1 и погрешность ∆ T 2 , вызванную неточностью (неидеальностью) значения F 0 частоты генератора тактовых импульсов.

Погрешность дискретности ∆ T 1 , по природе аналогична рассмотренной в первом режиме и представляет собой аддитивную погрешность (рис. 8.27 а ). Появление второй составляющей - погрешности ∆ T 2 , вызванной неточностью (неидеальностью) иллюстрирует (рис. 8.27 б ).

Если бы частота сигнала генератора тактовых импульсов была строго равна номинальной F 0 , то число импульсов, поступивших в счетчик в течение интервала T x , было бы равно N 1 . Если же частота сигнала генератора тактовых импульсов будет, например, несколько больше номинальной и составит F 0 + ∆F 0 , то на том же интервале T x в счетчик поступит больше импульсов: N 2 > N 1 . Эта составляющая погрешности мультипликативна, т.е. ее значение тем больше, чем больше длительность измеряемого периода (интервала) T (рис. 8.27 в).

Суммарная абсолютная погрешность ∆ T результата измерения периода T x и суммарная относительная погрешность δ T %, соответственно:

T = ∆ T 1 + ∆ T 2 = ±;

δ T = δ T 1 + δ T 2 = ±(1/F 0 T x + ∆F 0 /F 0 ).

Отдельные составляющие и суммарные погрешности результата измерения периода T x в абсолютном и относительном видах соответственно графически представлены на (рис. 8.28). В этом режиме, чем меньше измеряемый период T x (чем больше значение частоты f x ), тем хуже, так как тем больше относительная погрешность. Для измерения сравнительно малых значений периода T x (или сравнительно высоких частот) следует использовать первый режим цифрового частотомера - режим измерения частоты.

Контрольные вопросы

1 Для измерения, каких физических величин помимо измерения частотно-временных параметров применяются цифровые частотомеры?

2 Каким образом работает цифровой частотомер в режимах измерения частоты?

3 Какие погрешности возникают при работе цифрового частотомера в режимах измерения частоты?

4 Каким образом работает цифровой частотомер в режимах измерения периода?

5 Какие погрешности возникают при работе цифрового частотомера в режимах измерения периода?


Похожая информация.


Частотомер – прибор для измерения частоты периодических процессов (колебаний). Частоту механических колебаний обычно измеряют с помощью вибрационных механических частотомеров и электрических частотомеров, используемых совместно с преобразователями механических колебаний в электрические. Простейший вибрационный механический частотомер, действие которого основано на резонансе, представляет собой ряд упругих пластин, укрепленных одним концом на общем основании. Пластины подбирают по длине и массе так, чтобы частоты их собственных колебаний составили некую дискретную шкалу, по которой и определяют значение измеряемой частоты. Механические колебания, воздействующие на основание частотомера, вызывают вибрацию упругих пластин, при этом наибольшая амплитуда колебаний наблюдается у той пластины, у которой частота собственных колебаний равна (или близка по значению) измеряемой частоте.

Для измерения частоты электрических колебаний применяют электромеханические, электродинамические, электронные, электромагнитные, магнитоэлектрические частотомеры. Простейший электромеханический частотомер вибрационного типа состоит из электромагнита и ряда упругих пластин (как в механическом частотомере) на общем основании, соединённом с якорем электромагнита. Измеряемые электрические колебания подают в обмотку электромагнита; возникающие при этом колебания якоря передаются пластинам, по вибрации которых определяют значение измеряемой частоты. В электродинамических частотомерах основным элементом является логометр, в одну из ветвей которого включен колебательный контур, постоянно настроенный на среднюю для диапазона измерений данного прибора частоту. При подключении такого частотомера к электрической цепи переменного тока измеряемой частоты подвижная часть логометра отклоняется на угол, пропорциональный сдвигу фаз между токами в катушках логометра, который зависит от соотношения измеряемой частоты и резонансной частоты колебательного контура. Погрешность измерений электродинамического частотомера 10-12– 5·10-14.

Частоту электромагнитных колебаний в диапазоне радиочастот и СВЧ измеряют при помощи электронных частотомеров (волномеров) - резонансных, гетеродинных, цифровых и др.

Действие резонансного частотомера основано на сравнении измеряемой частоты с частотой собственных колебаний электрического контура (или резонатора СВЧ), настраиваемого в резонанс с измеряемой частотой. Резонансный частотомер состоит из колебательного контура с петлёй связи, воспринимающей электромагнитные колебания (радиоволны), детектора, усилителя и индикатора резонанса. При измерении контур настраивают при помощи калиброванного конденсатора (или поршня резонатора в диапазоне СВЧ) на частоту воспринимаемых электромагнитных колебаний до наступления резонанса, который регистрируют по наибольшему отклонению указателя индикатора. Погрешность измерений таким частотомером 5.10-3 – 5·10-4. В гетеродинных частотомерах измеряемая частота сравнивается с известной частотой (или её гармониками) образцового генератора - гетеродина. При подстройке частоты гетеродина к частоте измеряемых колебаний на выходе смесителя (где происходит сравнение частот) возникают биения, которые после усиления индицируются стрелочным прибором, телефоном или (реже) осциллографом. Относительная погрешность гетеродинных частотомеров 5·10-4 – 5·10-6.


Широкое применение получили цифровые частотомеры, принцип действия которых заключается в подсчёте числа периодов измеряемых колебаний за определённый промежуток времени. Электронно-счётный частотомер состоит из формирующего устройства, преобразующего синусоидальное напряжение измеряемой частоты в последовательность однополярных импульсов, временного селектора импульсов, открываемого на определённый промежуток времени (обычно от 10-4до 10 сек), электронного счётчика, отсчитывающего число импульсов на выходе селектора, и цифрового индикатора. Современные цифровые частотомеры работают в диапазоне частот 10-4 – 109 Гц, относительная погрешность измерения 10-9– 10-11; чувствительность 10-2 в. Такие частотомеры используются преимущественно при испытаниях радиоаппаратуры, а с применением различных измерительных преобразователей – для измерения температуры, вибраций, давления, деформаций и других физических величин.

Разновидностью образцовых частотомеров, высшей точности являются эталоны и стандарты частоты, погрешность которых лежит в пределах 10-12 – 5.10-14. Измерителем частоты вращения валов машин и механизмов служит тахометр.