Все о печах и каминах - Информационный портал

Как надежно припаять обмотки к якорю электродвигателя. Ремонт обмоток электрических машин

4-6. ПАЙКА ОБМОТОК, КОЛЛЕКТОРОВ, БАНДАЖЕЙ

Соединение проводников пайкой производится при помощи припоя. По температуре расплавления припои делятся на мягкие (олово - свинец) с температурой плавления до "230° С и твердые (медь - серебро) с температурой плавления 700° С и выше. Существует также промежуточная группа припоев. Из числа мягких оловя-нисто-свинцовых припоев применяются припои марок ПОС-30-ПОС-90 (цифра обозначает процентное содержание олова) с температурой плавления 180° С. Хорошие результаты дает пайка чистым оловом (температура плавления 230° С). Однако вследствие дефицитности этого металла пайку чистым оловом производят лишь в осо-

Для якоря

Для якоря

бо ответственных электрических машинах при наличии повышенных температур.

Кадмиево-цинково-серебряные припои (ПКДЦ Ср 31) с температурой плавления 250° С применяются для пайки бандажей машин с изоляцией класса Н, а свинцово-серебряные припои (ПССр 2,5) с температурой плавления 280° С, применяются для пайки коллекторов этих машин.

Из числа твердых применяются серебряные припои (П Ср 45-70) с температурой расплавления 660- 730° С и медно-фосфористые (ПМФ7, МФ-3) с температурой плавления 710-850° С. К припоям предъявляется ряд требований: они должны в расплавленном виде достаточно хорошо проникать в щели между спаиваемыми поверхностями, т. е. иметь достаточную жидкотекучесть, не должны размягчаться при температурах, лежащих по возможности близко к температуре плавления, и обеспечивать достаточную механическую прочность пайки при этих температурах. Место пайки не должно быть хрупким. Пайка должна иметь достаточно низкое электрическое сопротивление и, кроме того, с течением времени это сопротивление, равно как и механические показатели, не должно ухудшаться за счет окисления и старения.

Следует отметить, что припои с большим содержанием свинца более склонны к окислению, а припои медно-фосфористые дают несколько более хрупкие соединения, чем серебряные.

Для того чтобы припой мог дать прочное соединение поверхностей, кроме чистоты их необходимо, чтобы на них не было пленки окислов. При температуре пайки такой пленкой покрыты поверхности любого металла. Для уничтожения пленки окислов служат флюсы: канифоль для мягких паек и бура для твердых. Протравка спаиваемых поверхностей кислотой при пайке токоведущих частей в электрических машинах не допускается, так как кислота разрушает изоляционные материалы.

Канифоль может применяться в твердом виде или в виде спиртового раствора. Бура применяется в виде порошка либо водного раствора. Пайка производится иа-яльной лампой или паяльником. Для ускорения пайки желательно применение электрических паяльников. Для пайки твердым припоем применяются клещи с электронагревом (рис. 4-20) и графитовыми губками,

Мягкими припоями паяют коллекторы и бандажи всех машин, статорные и роторные шины и соединения у машин, изолированных по классу А с невысокими рабочими температурами.

Чисто оловянистым припоем рекомендуется паягь коллекторы и бандажи ответственных машин, у которых возможны значительные перегрузки. Для нормальных машин пайка коллекторов и бандажей может производиться припоем ПОС-30-ПОС-60 с 30-6Э%-ным содержанием олова (ГОСТ 1499-42).

Рис. 4-20. Сварочные клещи.

Твердым припоем паяют: шины (стержни) обмоток машин, имеющих высокие перегревы и изолированных по классу В-Н, неизолированные обмотки короткозамк-нутых роторов, демпферные клетки и т. д. Твердым припоем производится также соединение медных шин в процессе намотки катушек. Тонкие провода во избежание пережога паяют мягкими припоями.

Технология пайки мягкими припоями предусматривает следующие операции: 1) очистка поверхности места пайки; 2) прогрев места пайки до температуры, при которой припой плавится от прикосновения к месту пайки; 3) обильная промазка канифолью; 4) введение палочки припоя путем прижимания ее к щели между спаиваемыми поверхностями; 5) удаление (тряпкой) излишков припоя в горячем состоянии; 6) остывание и смывание остатков канифоли спиртом.

Для лучшего соединения паяемых поверхностей рекомендуется их предварительное облуживание.

Пайка коллекторов производится в наклонном положении для того, чтобы олово не затекло за петушки. Прогрев коллектора паяльной лампой должен производиться весьма осторожно, чтобы не отпустить пластин. Обмотка при этом закрывается асбестовой тканью или

картоном. У малых коллекторов достаточно прогреть петушки паяльником.

То же относится к впайке проводов в ленточные петушки (рис. 4-21). Прорезь в пластине, петушок и конец обмоточного провода должны быть предварительно об-лужены.

Наилучшие результаты дает пайка коллекторов в ванне. При этом якорь устанавливают вертикально коллектором вниз. Торцовую часть петушков ставят на асбестовую прокладку, лежащую на борту стального кольца. Кольцо и коллектор прогревают при помощи электрообогрева до температуры 250° С, после чего петушки обильно промазывают канифолью и в канавку между ними и бортом кольца наливают расплавленное олово или припой.

При этом методе пайки обеспечивается хорошее проникновение олова во все места, подлежащие пропайке.

Олово, естественно, ие должно наливаться выше уровня петушков, чтобы оно не затекало в обмотку.

Для выполнения пайки по указанному способу ремонтный цех должен иметь установку для нагрева и набор сменных колец для разных диаметров коллекторов.

Весьма удобным (в особенности в условиях ремонта) является способ нагрева петушков при пайке коллекторов, согласно которому коллектор охватывается медным хомутом или проводом, обеспечивающим хороший контакт с пластинами. Один конец от сварочного трансформатора подводят к этому хомуту, а второй конец - к паяльнику, представляющему собой медный стержень с графитовой накладкой, укрепленный в рукоятке из изоляционного материала. Прикосновением графитовой накладки к петушку его разогревают до нужной температуры.

Рис. 4-21. Пайка петушков.

Пайка Шин двухслойной обмотки предусматривает подготовку, т. е. охват шин скобочкой и расклиновку их медным клином (рис. 4-22). Ротору дается легкий наклон для предотвращения затекания олова в обмотку.

Если шины имеют большое сечение, а скобочка большую длину, то для облегчения пропайки всей поверхности в скобе делают прорези или круглые отверстия (рис. 4-"23). Пайка может быть хорошо выполнена толь-

Рис. 4-22. Подготовка

стержней роторной

обмотки к пайке.

Рис 4-23. Скобка с отверстиями.

ко в том ■случае, если внутри скобки с расклиненными шинами не остается пустот. В противном случае припой будет вытекать и пайка получится непрочной.

Пайка бандажей после их намотки заключается в равномерной пропайке тонким слоем олова рядом лежащих витков бандажной проволоки, так что образуется как бы сплошной пояс. При этом не должно быть мест, где олово наложено настолько толстым слоем, что закрывает витки бандажной проволоки.

Пайку проводов твердым припоем производят в следующей последовательности: 1) подготовка торцов; 2) разогрев до темно-красно-малинового цвета; 3) посыпание бурой до полного закрытия слоем расплавленной буры концов провода; 4) дальнейший нагрев до момента расплавления припоя, после чего необходимо прекратить нагревание; 5) осмотр и опиловка места пайки; проверка прочности ее на изгиб. Припой в виде листочка закладывают между торцами провода. Для прямоугольной меди большого сечения стык выполняют наискось (угол 65°). Концы вкладывают в зажимы и закрепляют один плотно, другой свободно. Нагрев места пайки производят паяльной лампой, автогенной горелкой или электроклещами (рис. 4-20).

Пайка шин может производиться аналогичными клещами с угольными губками. Припой в виде листочка закладывают под скобу, которая сжимается клещами. На короткое время, необходимое для расплавления припоя, включают ток.

Хорошие результаты дает пайка припоем из фосфористой меди МФ-3 (температура плавления 720-740° С).

Подлежащие пайке поверхности очищаются шкуркой и сдавливаются электроклещами. Включением тока место пайки нагревается до 750-800° С, и одновременно кромки спаиваемых поверхностей промазываются припоем. Благодаря высокой текучести этого припоя он распределяется по всей поверхности. Для лучшего растекания припоя плоскость спая желательно расположить наклонно или вертикально.

Пайка алюминиевых проводов и шин усложняется тем обстоятельством, что алюминий сильно подвержен окислению. Для пайки алюминиевых проводов между собой и с медными проводами разработаны специальные припои [Л. 1] с температурой плавления 160-450° С, содержащие в основном цинк, олово и добавки: алюминий, медь, серебро, кадмий.

Алюминий можио паять оловом при применении ультразвукового паяльника. Такой паяльник имеет, кроме нагревателя, обмотку, питающуюся током частотой 20 000 гц, охватывающую стальной сердечник из специального сплава. Рабочий конец паяльника при этом совершает высокочастотные колебашия, разрушающие окисные планки.

Страница 1 из 5

Выявление и устранение неисправностей электрических машин

В электрических машинах возможны следующие виды неисправностей:

  • искрение щеток;
  • перегрев обмоток;
  • короткие замыкания в обмотках;
  • ненормальное напряжение генератора;
  • положение, когда генератор не возбуждается;
  • недопустимые колебания частоты вращения двигателя.

Искрение щеток сопровождается повышенным нагревом коллектора и щеток. Причиной этого может быть загрязнение щеток и коллектора, износ щеток, подгорание коллектора, неплотное прилегание пружин, заедание щеток в щеткодержателе.

Грязь со щеток и коллектора удаляют сжатым воздухом, а в некоторых случаях ветошью, смоченной в бензине. Изношенные более чем на 60% или поломанные щетки заменяют новыми. Новые или плохо притертые щетки притирают к коллектору. Для этого полоску шлифовальной бумажной шкурки (рис. 185, а) несколько раз протягивают между щеткой и коллектором. Шлифовальная шкурка абразивной поверхностью должна быть обращена к щетке. После притирки коллектор и щетки продувают сжатым воздухом.

Применять наждачное или карборундовое полотно для шлифования щеток нельзя. Для правильной притирки щеток концы шлифовальной шкурки нужно отогнуть вниз (см. рис. 185, а), так как при отгибании шкурки вверх (рис. 185, б) края щеток будут опилены и уменьшится активная ширина щеток, что может вызвать искрение на коллекторе.

Рис. 185 - Схемы притирки щеток: правильная (а), неправильная (б)

При наличии нагара, раковин и прочих местных дефектов коллектор протачивают на токарном станке или шлифуют мелкозернистыми шлифовальными кругами. Коллектор должен иметь полированную поверхность, поэтому после протачивания и шлифования его полируют, вследствие чего устраняются царапины, образовавшиеся в результате обработки коллектора (резцом или камнем). Полируют коллектор при номинальной частоте вращения (ротора двигателя), применяя шлифовальную бумажную шкурку № 00.

Для полирования коллектора шлифовальную шкурку прикрепляют к деревянной колодке (рис. 186), которую пригоняют точно по диаметру коллектора; ширину бруска выбирают такой, чтобы он мог свободно помещаться между двумя соседними траверсами. Колодку прижимают к вращающемуся коллектору. При получении гладкой поверхности коллектор очищают и продувают сжатым воздухом.

Рис. 186 - Колодка для полировки коллектора

Нажатие на щетку, создаваемое пружиной щеткодержателя, должно соответствовать определенному давлению. Для уменьшения механических потерь на коллекторе рекомендуется устанавливать минимальное нажатие, при котором щетки работают без искрения. Следует учитывать, что чем больше частота вращения, тем большее нажатие устанавливают, чтобы щетки удовлетворительно работали при возможных вибрациях щеткодержателей. Разница в нажатии на отдельные щетки не должна превышать 10% среднего его значения.

Проверку силы нажатия щеток производят динамометром (1) (рис. 187), закрепленным за рычажок щеткодержателя (2), прижимающий щетку (3) к коллектору (4). Для определения силы нажатия необходимо между щеткой и коллектором проложить лист бумаги (5) и постепенно оттягивать динамометр. В момент свободного вытаскивания бумаги из-под щетки динамометр будет показывать величину нажатия щетки на коллектор.

Рис. 187 - Измерение усилия нажатия щетки динамометром

Правильность установки щеток надо обязательно проверять после каждого протачивания коллектора. При неправильном положении щеток машина начинает искрить при неполной нагрузке. При холостом ходе машина не искрит. По мере возрастания нагрузки может наблюдаться круговой огонь по коллектору.

Проверку правильного положения траверсы производят индуктивным методом при неподвижной машине. К отключенной обмотке возбуждения через реостат от аккумуляторной батареи подводят постоянный ток. Величина тока в обмотке не должна превышать примерно 5...10% номинального. К зажимам якоря подсоединяют милливольтметр на 45...60 мВ с нулем посередине шкалы. В моменты замыкания и размыкания тока возбуждения в якоре индуцируется электродвижущая сила (э. д. с.) и стрелка прибора отклоняется в ту или другую сторону в зависимости от положения щеток. При щетках, находящихся в нужном положении (на нейтрали), э. д. с. должна быть равна нулю. Траверсу со щетками передвигают до тех пор, пока не будет достигнуто требуемое положение щеток. Рекомендуется проверять правильность положения траверсы при различных положениях якоря. Якорь следует поворачивать в одном и том же направлении во избежание влияния на показания прибора возможного перемещения щеток в щеткодержателях. Окончательно правильное положение траверсы проверяют во время испытаний машины на стенде.

Кроме того, причиной искрения щеток может быть неодинаковое расстояние по окружности коллектора между щетками отдельных бракетов. Необходимо проверить положение щеток на коллекторе с помощью бумажной ленты и установить бракеты так, чтобы щетки соседних бракетов находились на одинаковом расстоянии по окружности коллектора.

Искрение может вызываться также применением угольных щеток несоответствующей марки (слишком мягких или слишком твердых). При ремонте необходимо заменять все щетки и устанавливать те марки, которые рекомендует завод-изготовитель электрических машин.

Повышенный нагрев (перегрев) обмоток электрической машины устанавливают в период предремонтных испытаний. Равномерный перегрев всей машины при отсутствии других признаков неисправности свидетельствует о ее перегрузке. В этом случае сначала следует проверить соответствие фактической нагрузки номинальному режиму работы машины. Ухудшение условий вентиляции в результате засорения вентиляционных каналов крыльчатки вентилятора может также вызвать перегрев машины.

Повреждения в обмотках полюсов приводят к неравномерному их нагреву. В обмотках полюсов чаще всего повреждаются переходы, выводные концы катушек и места прохода выводных концов через корпус. К наиболее распространенным дефектам следует отнести замыкание обмоток на корпус, обрыв или плохой контакт в обмотках, соединение между витками.

После выявления повреждений обмотки перематывают. Для этого удаляют старую обмотку, очищают пазы от заусенцев, окрашивают их лаком и изолируют электрокартоном, прессшпаном и лакотканью.

Способы устранения дефектов в обмотках полюсов зависят от характера повреждения. Обрыв, а также плохой контакт в наружных доступных для ремонта местах устраняют паянием. Чтобы найти замыкание на корпус, катушку с дефектом снимают с сердечника полюса и осматривают места соприкосновения с полюсом и станиной.

Замыкания в обмотках полюсов, если они находятся не на выводных концах, устраняют частичной или полной перемоткой. С катушки отматывают витки и одновременно осматривают. Если изоляция катушек, за исключением мест соединения с корпусом или замыкания между витками, не повреждена и находится в удовлетворительном состоянии, то изолируют только поврежденные места, а полная перемотка катушки не производится.

Если повреждения в обмотках полюсов вызваны влажной изоляцией, то катушку просушивают.

При коротких замыканиях в обмотке якоря генератор плохо возбуждается, двигатель не развивает номинальных оборотов, в некоторых случаях якорь вращается толчками. При возбуждении генератора от постороннего источника тока якорь сразу после подключения обмотки возбуждения, сильно нагревается и появляется дым. Пластины коллектора, соединенные с дефектной нагревающей обмоткой якоря, обгорают. В этом случае могут произойти короткие замыкания: части витков одной секции и всей секции, между двумя секциями, лежащими в одном пазу, в лобовых частях обмотки, между любыми двумя точками обмотки, например в случае пробоя обмотки на корпус в двух точках.

Для нахождения замыканий витков одной секции, между соседними коллекторными пластинами или же между соседними секциями, находящимися в одном слое обмотки, используют метод падения напряжений, не требующий специального оборудования. Он применяется как для петлевой, так и для волновой обмоток и особенно удобен при проверке якоря с уравнительными соединениями. Метод состоит в том, что к двум смежным коллекторным пластинам (1) (рис. 188) подводят постоянный ток с помощью щупов (2), а щупами (3) измеряют падение напряжения на этой же паре коллекторных пластин. В качестве источника тока удобно применять аккумуляторную батарею, обеспечивающую через последовательно включенный с якорем реостат ток 5...10 А. Тогда в случае петлевой обмотки при наличии замыкания в секции, присоединенной к проверяемой паре пластин, сопротивление ее будет меньше и падение напряжения при одном и том же токе будет также меньше, чем на другой паре пластин, между которыми нет замыкания. Проверять якорь необходимо при поднятых щетках.

Рис. 188 - Схема для нахождения замыканий между витками и обмотками якоря

Замыкание обмотки якоря или коллектора на корпус во время работы машины не обнаруживается, если только нет замыкания у одного из проводов сети. При наличии такого замыкания (если корпус машины не изолирован от земли) замыкание обмотки на корпус образует замкнутую цепь. При отсутствии заземления одного из проводов сети замкнутая цепь может образоваться только при замыкании обмотки на корпус в двух местах.

Определить замыкание обмотки на корпус можно мегомметром или контрольной лампой (рис. 189). В последнем случае один конец от лампы присоединяют к источнику питания, а другой — к коллектору, вал же якоря соединяют со вторым проводником источника питания. Наличие соединения обмотки с корпусом определяют по загоранию лампы. При этом способе лампа горит только при хорошем контакте в месте соединения.

Рис. 189 - Схема для нахождения места соединения обмотки якоря с корпусом

Присоединение источника тока к коллектору производится в случае петлевой обмотки в двух диаметрально противоположных точках, в случае волновой — к пластинам, находящимся на расстоянии половины коллекторного шага. Один проводник от милливольтметра присоединяют к валу якоря, а концом другого поочередно касаются всех коллекторных пластин. Если проверяют якорь с петлевой обмоткой, то по мере приближения к пластине, соединенной с корпусом, показания прибора уменьшаются. При соприкосновении конца проводника от прибора с пластиной коллектора, соединенной с корпусом, показание милливольтметра будет равно нулю. Показание будет очень малым при плохом контакте, а также когда замыкание на корпус имеет не коллекторная пластина, а секция, присоединенная к этой пластине.

Так как при проверке всего якоря наибольшее возможное напряжение, действующее на прибор, может оказаться равным напряжению, подводимому к якорю, необходимо применять прибор с пределом измерения, равным напряжению источника питания. Уменьшения отклонения стрелки прибора можно достигнуть регулировкой силы тока путем подключения прибора через реостат.

Место замыкания на корпус можно найти, если шевелить по очереди секции в местах выхода обмотки из пазов и одновременно измерять сопротивление изоляции мегомметром. Шевеление секций создает изменение контакта, а следовательно, и изменение сопротивления. Вместо мегомметра можно пользоваться контрольной лампой, включая ее между коллектором и валом якоря. Дефект обнаруживают по миганию лампы.

В тех случаях, когда указанные выше способы не дают результатов, приходится путем распайки обмотки делить ее на части. Разделив обмотку на две части, проверяют мегомметром каждую часть в отдельности. Обнаружив замыкание на корпус в одной из половин, концы другой оставляют нетронутыми, а поврежденную половину снова разделяют на две части и так до тех пор, пока точно не определится секция с замыканием на корпус.

Устраняют повреждения разными способами. Например, обрыв или плохой контакт в обмотке (в петушках и хомутиках) и коллекторе устраняют перепайкой обмотки в указанных местах; если же обрыв произошел в самом проводнике, то стержень или секцию заменяют новыми.

Наиболее часто замыкание на корпус встречается в местах выхода секций из пазов. Этот дефект устраняют установкой под секцией небольших клиньев из изоляционного материала (фибры, сухого бука) или прокладкой, покрытой лаком подкладки из летероида, электрокартона, слюды и т. д. Замыкание на корпус в пазовой части секции устраняют переизолировкой всей секции или же заменяют ее новой. Замыкание на корпус, вызванное увлажнением изоляции, устраняют просушкой. Если замыкание на корпус в нескольких секциях и, кроме того, изоляция других секций плохая, то перематывают всю обмотку якоря. В случае соединения коллектора с корпусом необходима его разборка и ремонт.

Замыкание в обмотке якоря между несмежными секциями и вообще замыкание большого числа секций встречаются реже замыканий внутри самой секции или же между концами секций на коллекторе. Поэтому прежде чем приступить к устранению замыканий, необходимо тщательно осмотреть коллектор и убедиться в отсутствии соединений между его пластинами.

В случае короткого замыкания в секции ее необходимо заменить, так как при этом дефекте вся изоляция секции обычно приходит в негодность. Переизолировкой места замыкания можно ограничиться только в случае неполного контакта в месте замыкания. Длительная работа машины при больших короткозамкнутых ветвях может привести в негодность всю обмотку, что потребует полной ее перемотки.

В асинхронных электродвигателях возможны следующие виды неисправностей:

  • перегрев статора;
  • перегрев обмоток статора и ротора;
  • ненормальная частота вращения двигателя;
  • ненормальный шум в машине.

Перегрев статора может наблюдаться при напряжении сети выше номинального. Для устранения этой неисправности достаточно снизить напряжение сети до номинального или улучшить вентиляцию двигателя.

Повышенный местный нагрев при холостом ходе двигателя и номинальном напряжении сети может вызываться заусенцами, образовавшимися при опиливании или вследствие касания ротора о статор во время работы двигателя. Неисправность устраняют удалением заусенцев; для этого места замыкания обрабатывают напильником, соединенные стальные листы разъединяют, лакируют изоляционным лаком с последующей сушкой на воздухе.

В обмотках переменного тока возможны короткие замыкания между витками одной катушки, катушками одной фазы и катушками разных фаз. Основным признаком, по которому можно найти замыкание в обмотках переменного тока, является повышенный нагрев части катушки с короткозамкнутыми витками. В некоторых случаях короткозамкнутую часть обмотки можно сразу определить по внешнему виду — по обугливающейся изоляции.

Для определения дефекта в статорной или роторной обмотке необходимо статорную обмотку включить на пониженное напряжение (1 / 3 ... 1 / 4 номинального) при разомкнутом роторе и измерить напряжение на кольцах ротора, медленно проворачивая ротор. Если напряжения на кольцах ротора (попарно) не равны между собой и меняются в зависимости от положения ротора по отношению к статору, то это указывает на замыкание в статорной обмотке. При замыкании в роторной обмотке (при исправной статорной) напряжение между кольцами ротора будет неодинаковым и не будет меняться в зависимости от положения ротора.

После того как установлено, какая из обмоток (роторная или статорная) имеет соединение между витками, определяют дефектную фазу рассмотренными выше способами.

Если замыкание произошло между двумя фазами, то место соединения находят аналогично предыдущему, разъединяя обмотки пофазно. Катушки одной из фаз, имеющей соединение, разделяют на две части и мегомметром проверяют наличие соединений каждой такой половины со второй фазой. Затем ту часть, которая соединена с другой фазой, снова разделяют на две части и каждую из них снова проверяют и т. д.

Метод последовательного деления на части применяют при нахождении замыкания в обмотках, имеющих параллельные ветви. В этом случае необходимо дефектные фазы разделить на параллельные ветви и определить сначала, между какими ветвями имеется соединение, а затем применить к ним метод. Так как замыкания между фазами чаще бывают в лобовых частях обмотки или соединительных проводниках, то иногда удается сразу же найти место соединения путем шевеления лобовых частей с одновременной проверкой мегомметром.

Перегрев обмотки статора может наблюдаться при перегрузке двигателя или нарушении его нормальной изоляции. Снижение напряжения на зажимах двигателя ниже номинального также вызывает перегрузку двигателя током. Перегрев обмотки будет в случае неправильного соединения обмоток статора по схеме треугольника, а не звездой.

Причиной сильного местного нагрева обмотки статора может быть межвитковое соединение в обмотке или короткое замыкание между двумя фазами. Признаки неисправности: неодинаковая сила тока в отдельных фазах, двигатель сильно гудит и развивает пониженный крутящий момент.

Ремонт обмоток

При обнаружении межвитковых замыканий или замыканий на корпус, а также обрыва в фазах обмоток статора проводят частичную или полную перемотку статора. Чтобы облегчить извлечение дефектных катушек из пазов, статор нагревают до 70...80° С. Затем с помощью выколотки и деревянного молотка выбивают текстолитовые клинья, разрезают и снимают с помощью межкатушечных соединений обмотки статора, разъединяют катушки и вынимают их из пазов. Пазы статора очищают от старой изоляции, проверяют состояние стальных пакетов.

Намотку катушек производят изолированным проводом соответствующей марки на каркасе или шаблоне. Если отсутствует провод требуемой марки, катушку мотают проводом другой марки, но того же класса изоляции.

Катушки наматывают на шаблон-лодочку, имеющий устройство для закрепления концов проводов. Одна из сторон шаблона выполняется съемной для снятия катушки после намотки. При намотке катушек из тонкого изолированного провода с большим числом витков используют автоматические и полуавтоматические станки. Эти станки снабжены счетчиками оборотов и устройствами для автоматической остановки станка после намотки требуемого числа витков. Станки имеют приспособления для укладки между слоями катушек бумажных изоляционных прокладок и механизмы раскладки, укладывающие проводники в правильные ряды.

По окончании намотки по периметру катушки укладывают прокладку из электрокартона и связывают катушку в местах вырезов в шаблоне. Концы проводов обрезают на расстоянии, указанном на чертеже.

Корпусную изоляцию катушек выполняют из нескольких слоев лакоткани или микаленты. Для придания необходимой формы и монолитности витки пазовой части катушки перед наложением корпусной изоляции смазывают клеящим глифталевым или шеллачным лаком. Затем пазовую часть катушки нагревают в специальном нагревателе до 110...120°С, после чего закладывают в пресс-форму.

При опрессовке нагретые связующие вещества клеящего лака размягчаются и заполняют поры изоляции, при охлаждении затвердевают и скрепляют проводники катушки. Катушки крепят в пазах текстолитовыми клиньями, забиваемыми деревянным молотком.

Катушки, заложенные в пазы, соединяют пайкой или сваркой оплавлением. Сварка оплавлением производится через понижающий трансформатор мощностью 500...600 Вт и напряжением 220/24 и 220/12 В и может быть применена для соединения проводов диаметром от 0,8 мм и выше. Свариваемые концы проводов предварительно скручивают и соединяют с одним из зажимов трансформатора, к другому зажиму присоединяют угольный электрод.

В электродвигателях, используемых на рефрижераторном подвижном составе, наибольшее распространение получили обмоточные провода из медной проволоки. В некоторых типах электродвигателей применяют алюминиевые провода, которые по механической прочности и электрической проводимости значительно уступают медным.

Обмоточные провода изготовляют с волокнистой, эмалевой и комбинированной изоляцией. Материалом для волокнистой изоляции является бумага (кабельная или телефонная), хлопчатобумажная пряжа, натуральный и искусственный шелк (капрон, лавсан), асбестовые и стеклянные волокна. Их накладывают в один или несколько слоев в виде обмотки или оплетки (чулка). Для эмалевой изоляции используют различные органические соединения (поливинилацетат, кремнийорганические смолы и т. д.).

Марки обмоточных проводов условно обозначаются буквами. В некоторых марках после буквенного обозначения стоит цифра «1» или «2»: цифра «1» указывает на нормальную толщину изоляции, цифра «2» — на усиленную толщину.

Обозначение марок обмоточных проводов начинается с буквы П (провод). Волокнистая изоляция обозначается буквами: Б — хлопчатобумажная пряжа, Ш — натуральный шелк, ШК и К — искусственный шелк, капрон, С — стекловолокно, А — асбестовое волокно. Буквами О и Д обозначается количество слоев изоляции (один или два). Для алюминиевых обмоточных проводов в конце обозначения добавляется буква А. Например , марка ПБД обозначает: провод обмоточный медный с изоляцией из двух слоев хлопчатобумажной пряжи.

Эмалевая изоляция обмоточных проводов обозначена так: ЭЛ — эмаль лакостойкая, ЭВ — эмаль высокопрочная (винифлекс), ЭТ — эмаль теплостойкая полиэфирная, ЭВТЛ — эмаль полиуретановая, ЭЛР — эмаль полиамидно-резольная. Например , марка ПЭЛ обозначает: провод медный, покрытый лакостойкой эмалью.

Применяется также комбинированная изоляция, которая состоит из эмалевой изоляции и наложенной поверх нее изоляции из волокнистых материалов. Например, марка ПЭЛБО обозначает: провод медный, покрытый лакостойкой эмалью и хлопчатобумажной пряжей в один слой. Марки обмоточных проводов, изолированных стекловолокном и пропитанных в теплостойком лаке, имеют в обозначении букву К (например, провод марки ПСДК).

Трехфазные обмотки статоров машин переменного тока условно подразделяют на однослойные, когда сторона катушки занимает весь паз, и двухслойные, когда сторона катушки занимает половину паза по высоте, т. е. в каждый паз закладываются две стороны катушки.

Двухслойные обмотки — наиболее распространенные типы обмоток статоров машин переменного тока. При перемотке двухслойной статорной обмотки сначала укладывают в пазы нижние стороны катушек первой фазы, а верхние стороны временно остаются поднятыми. Затем последовательно укладывают в пазы обе стороны катушек второй и третьей фазы. При этом одну сторону катушки помещают в нижнюю часть следующего незаполненного паза, а другую — верхнюю часть паза, уже наполовину заполненного обмоткой.

После укладки нижние, а затем и верхние обмотки уплотняют на дне паза с помощью специальной оправки и молотка. Между нижним и верхним слоями обмотки помещают изоляционную прокладку, верхний слой обмотки закрывают изоляцией и укрепляют клином. Между лобовыми частями фазных катушек помещают электрокартон. Уложенные катушки соединяют пайкой, а места соединений изолируют. После укладки обмотки проверяют правильность соединения катушек.

Ремонт коллекторов

В случае обнаружения на поверхности коллектора дорожек от срабатывания щетками коллектор протачивают, шлифуют и полируют. Для шлифования применяют абразивные круги, в состав которых входит пемза, пропитанная керосином. Полируют коллектор деревянной вогнутой колодкой, оклеенной стеклянной бумагой.

Во избежание выступления миканитовых прокладок над поверхностью коллектора его продороживают. Продороживание состоит в том, что миканитовую изоляцию между коллекторными пластинами вырезают на глубину 0,5...1,5 мм, на поверхности коллектора образуются продольные дорожки. Продороживание необходимо потому, что миканит более тверд, чем коллекторная медь, и при износе медных пластин миканит выступает на поверхность коллектора, что ухудшает работу щеток и коммутацию машины.

Продороживание коллекторов машин малой и средней мощности (преобразователей), подвагонных генераторов производят вручную с помощью скребка, изготовленного из ножовочного полотна (рис. 190). Продороживание коллекторов машин большой мощности осуществляют на станке фрезой или специальной переносной машинкой с гибким шлангом.

Рис. 190 - Продороживание изоляции коллекторов: 1 - коллектор; 2 - фреза; 3 - электродвигатель; 4 - суппорт продольного перемещения; 5 - суппорт вертикального перемещения; 6 - маховик; 7 - ролик

После фрезерования грани коллекторных пластин снимают шабером. Фаски снимают под углом 45° размером 0,5 мм (рис. 191) и тщательно очищают коллектор от остатков слюды и меди.

Рис. 191 - Снятие фасок с коллекторных пластин

Иногда требуется произвести выемку одной или нескольких медных пластин, имеющих значительные оплавления или выгорания меди. Причинами таких повреждений могут быть короткие замыкания между пластинами, пробой миканитовых пластин, поломка петушков в непосредственной близости от места соединения с пластинами.

Техническими условиями на ремонт электрических машин допускается замена не более пяти пластин. Замена коллекторных пластин относится к числу сложных видов ремонта; выемка даже одной пластины может повлечь за собой нарушение монолитности коллектора и потерю геометрически правильной формы, если не принять специальных мер и не применить соответствующие приспособления для скрепления коллектора при удалении пластины. В качестве одного из таких приспособлений может служить стяжной диск.

Биение коллектора в отремонтированной машине измеряют индикатором после вращения якоря с номинальной скоростью. Биение коллектора должно быть не более 0,03...0,04 мм. Превышение этих норм вызывает сильное искрение щеток. Причинами биения коллектора могут быть эксцентриситет, эллиптичность и выступание отдельных пластин при ослаблении их крепления. Если обнаруживают чрезмерное биение коллектора, машину разбирают и затягивают болты, стягивающие пластины, сначала в холодном состоянии, затем с подогревом до 100...110°С. После этого поверхность коллектора обтачивают, полируют и продороживают.

Наиболее часто встречающиеся повреждения контактных колец следующие: износ (срабатывание) контактной поверхности и нарушение изоляции контактных болтов, оплавление и выгорание участков контактной поверхности.

Короткозамкнутые кольца с небольшими оплавленными и выгоревшими участками контактной поверхности можно восстанавливать наплавкой на нее латуни или фосфористой меди с последующей механической обработкой. Этим же способом можно восстанавливать частично изношенные пластины.

Восстановление изоляции контактных колец с холодной посадкой на втулку производят следующим образом. Внутрь собранного на подставке (6) (рис. 192) комплекта колец (5), уложенных с промежуточными дистанционными прокладками (4), вставляют несколько слоев электрокартона (3) толщиной 0,1...0,4 мм. Чтобы слои изоляции не сбивались при опрессовке, внутрь вставляют разрезную гильзу (2), свернутую из листовой стали толщиной 1,5 мм. Втулку (1) запрессовывают в отверстие гильзы на гидравлическом прессе.

Рис. 192 - Сборка контактных колец

Для повышения надежности холодной прессовки (посадки), изоляционный материал должен иметь малую усадку, т. е. он должен быть хорошо пропитан и просушен.

При горячей посадке контактных колец, в отличие от вышеприведенного способа ремонта, не втулку впрессовывают в контактные кольца, а контактные кольца в горячем виде с натягом насаживают на изолированную втулку.

Для изолирования втулки используют формовочный миканит толщиной 0,25...0,35 мм, разрезают полосами, смазывают шеллачным или глифталевым лаком, просушивают на воздухе в течение 0,5...1 ч и плотно накладывают на втулку, подогретую до 80...100° С. Полосы накладывают с небольшим перекроем до тех пор, пока диаметр втулки с наложенной на нее изоляцией превысит внутренний диаметр контактных колец на 1,5...2 мм. Затем изоляцию обертывают двумя-тремя слоями бумаги, плотно стягивают хомутом из стали толщиной 2...3 мм, нагревают до 120...130° С, подтягивают болты хомута и подвергают термической обработке изоляцию в течение 2...3 часа при 150° С — для шеллачного миканита и при 180° С — для глифталевого.

После остывания втулки с изоляции удаляют подтеки лака и протачивают на станке. Диаметр проточенной изоляции должен превышать внутренний диаметр контактных колец на величину натяга.

Контактные болты изолируют микафолием или формовочным миканитом толщиной 0,2...0,3 мм. Для этого поверхность болта очищают от старой изоляции, смазывают глифталевым или шеллачным лаком и просушивают на воздухе в течение 0,5...1 часа. Микафолиевую или миканитовую полосу также покрывают лаком, подогревают до размягчения, после чего плотно накладывают на болт и обкатывают на ровной, подогреваемой поверхности. Затем плотно обертывают изоляцию болта двумя-тремя слоями киперной ленты и подвергают термической обработке в течение 2...3 часов при соответствующей температуре. После остывания снимают с изоляции киперную ленту, очищают изоляцию от неровностей и подтеков лака, обрабатывают до нужных размеров вручную или на станке и обклеивают одним-двумя слоями электрокартона.

Щеткодержатели и траверсы тщательно осматривают, проверяют состояние их изоляции и исправность деталей щелочного аппарата. Во время ремонта щетки полностью заменяют, устанавливая вместо них щетки марок, рекомендуемых заводом-изготовителем электрических машин. В машинах постоянного тока щетки несоответствующей марки могут вызвать сильное искрение на коллекторе.

Новые щетки притирают по коллектору.

Притирка щеток вручную — очень трудоемкая операция, поэтому при замене щеток их притирают вне машины на специальном станке (рис. 193). На этом же станке проверяют правильность расстановки щеток по окружности коллектора. Червячный винт (7), насаженный на конец вала электродвигателя (1), вращает через червячное колесо (6) вал (3). Вал опирается на два шарикоподшипника, вставленных в капсулу (8), а вверху направляется бронзовой втулкой, запрессованной в плите (2). На шейку, проточенную в плите, надевают сменные оправки (4) для установки траверс щеткодержателей машин разных типов. На конец вала надевают барабан (5), наружный диаметр которого на 1 мм меньше диаметра коллектора. На барабан нанесены риски, по которым проверяют расстановку щеток по окружности коллектора. Затем вынимают щетки из обойм щеткодержателей и обертывают барабан стеклянной бумагой, которую закрепляют лентой. Щетки вставляют в обоймы, опускают на них нажимные пальцы щеткодержателей и включают электродвигатель. Щеточную пыль удаляют с помощью вытяжной вентиляции.

Рис. 193 - Станок для притирки щеток

Во время проверки состояния траверсы щеткодержателей обращают внимание на легкость перемещения нажимных пальцев при подъеме и опускании: при этом пальцы не должны касаться боковых стенок и вырезов щеткодержателей. Изоляция пальцев и изоляционные шайбы не должны иметь повреждений. Проверяют наличие стопорных болтов, болтов крепления пальцев и других крепежных элементов. Неисправные детали щеткодержателей (токоведущие болты, винты, нажимные пальцы, поломанные и недостаточно жесткие пружины) заменяют.

При вращении коллектора щетки вибрируют в обоймах и изнашивают их. Увеличение зазора между щеткой и обоймой щеткодержателя ведет к перекосу щетки в обойме и нарушению ее контакта с коллектором. Разработанные отверстия в корпусе щеткодержателей восстанавливают гальваническим способом или наплавкой с последующей обработкой. При невозможности восстановления обойму заменяют на новую. Восстановление размеров обоймы обжатием не допускается.

Условия работы электрических машин. Условия, в которых работают электрические, машины э. п. с., и в первую очередь тяговые двигатели весьма тяжелые. В отличие от стационарно устанавливаемых машин они подвержены воздействиям окружающей среды, динамическим ударам со стороны рельсового пути и работают в условиях широко, а иногда и резко изменяющихся значений тока, напряжения.

Несмотря на принимаемые меры, из окружающей среды в машины попадают влага и пыль. Влага проникает в поры изоляции обмоток машин, что приводит к снижению ее электрической прочности, создает условия для возникновения электрического или теплового ее пробоя, приводит к ускоренному ее старению. В сочетании с низкими температурами влага способствует появлению инея и обледенению коллектора и щеточного аппарата, что приводит к повышенному искрению под щетками. Повышенное искрение возникает и от загрязнения коллектора и щеточного аппарата пылью, попадающей в машину через неплотности люков и с охлаждающим воздухом.

Температура окружающей среды может доходить до - 40 °С зимой и до + 50 °С летом. Высокая температура ухудшает охлаждение электрических машин, способствует их чрезмерному иагреву, а низкая вызывает загусте-вание смазки в подшипниках, отпотевание машин при установке э. п. с. в депо.

При прохождении неровностей пути колесные пары э. п. с. воспринимают значительные динамические силы (особенно при высоких скоростях движения) . Эти удары, частично сглаженные системой рессорной подвески, передаются тяговым двигателям. Наиболее чувствительны они для тяговых двига телей с опорно-осевым подвешиванием, почти половина массы которых не подрессорена.

От действия динамических сил в элементах машин могут возникать трещины, изломы, повышенная выработка трущихся поверхностей, усиливаться искрение на коллекторе, слабнуть узлы соединений.

Напряжение в контактном проводе, а следовательно, напряжение, подводимое к тяговым двигателям (и другим электрическим машинам), могут отличаться от номинального значения (/ном на 10-12%. В отдельных случаях (например, при рекуперативном торможении) напряжением на зажимах тяговых двигателей может доходить до 1,25 Ь т ы- Заметно повышается напряжение на тяговых двигателях, связанных с боксующими колесными парами. При отрыве токоприемника от контактного провода происходит резкое снижение напряжения на тяговых двигателях, а при грозовых разрядах - его резкое повышение.

Всякое отклонение напряжения от номинального значения ухудшает работу тягового двигателя и снижает его тяговые свойства. Но особенно опасно повышенное напряжение, которое может вызвать потенциальное искрение на коллекторе и образование кругового огня, пробой изоляции обмоток, проводов, изоляции кронштейнов щеткодержателей, выводных кабелей.

При трогании или движении по затяжному подъему тяжеловесных составов или при движении с неполным числом работающих на локомотиве тяговых двигателей токи в них могут значительно превысить их допускаемые значения. Такие даже кратковременные перегрузки могут вызвать повышенное искрение под щетками, нарушить коммутацию, а при определенных условиях привести к образованию кругового огня на коллекторе.

Круговой огонь может возникнуть также и в результате быстрого нарастания тока при переходных процессах, протекающих в тяговых двигателях. Наиболее опасны переходные режимы, возникающие в результате образования кругового огня на соседнем параллельно включенном двигателе или при пробое плеча выпрямительной установки. Не менее опасными являются и режимы ударного включения полного напряжения на предварительно обесточенный тяговый двигатель, например при повторной подаче напряжения на двигатель в тот момент, когда главная рукоятка контроллера машиниста не возвращена на нулевую позицию.

Работа электрических машин с токами, превышающими допускаемые значения, приводит, кроме того, к их чрезмерному нагреву, что ускоряет старение изоляции и ограничивает полное использование их мощности.

При боксовании колесной пары частота вращения якоря тягового двигателя резко возрастает. При этом возникают большие центробежные силы, которые могут вызвать повреждение валов якорей тяговых двигателей, соединительных эластичных муфт, вентиляторов, ослабление или повреждение якорных бандажей. Кроме того, при повышенной частоте вращения якоря заметно усиливается искрение под щетками, ухудшается коммутация машины и создаются условия для возможного возникновения кругового огня на коллекторе. В момент восстановления сцепления боксующей колесной пары частота ее вращения (а следовательно, и связанного с ней якоря двигателя) мгновенно уменьшается. При этом запас кинетической энергии вращающегося якоря превращается в удар, передающийся на зубчатую передачу, вал якоря, подшипники и другие элементы двигателя, вызывая их повышенный износ, а иногда и поломку.

Статистикой установлено, что около 30-40% случаев отказов э. п. с. в эксплуатации связано с неисправностями, возникающими в электрических машинах. В целях повышения их надежности Правилами ремонта тяговых дви-ателей и вспомогательных машин элек троподвижного состава ЦТ 2931 (далее Правила ремонта) предусматриваются соответствующие профилактические мероприятия и устанавливаются конкретный порядок и сроки их проведения.

Так, Правилами ремонта предусматривается ремонт тяговых двигателей и вспомогательных машин трех видов: деповской, заводской I объема (средний) и заводской II объема (капитальный), а также устанавливается периодичность их проведения. При этом одновременно оговаривается возможность отклонения от установленных общесетевых межремонтных пробегов на 20% в обе стороны в целях облегчения заводам и депо более равномерного в течение года планирования ремонтов. Главному управлению локомотивного хозяйства МПС предоставлено право изменять сроки ремонта по отдельным типам электрических машин.

При ремонте электрических машин не допускается подмена их основных узлов, поэтому подшипниковые щиты, буксы моторно-осевых подшипников, якорные подшипники, траверсы и другие детали маркируют. Якорь желательно устанавливать в свой же остов. Эти требования обязательны, так как обеспечивают максимальное снижение затрат труда при соблюдении необходимых характеристик и параметров электрической машины после сборки.

Все отремонтированные или новые детали перед установкой на машину проверяют, испытывают и предъявляют к приемке мастеру или приемщику локомотивов.

Каждую выпускаемую из ремонта электрическую машину подвергают контрольным испытаниям согласно государственным стандартам и требованиям Правил ремонта тяговых и вспомогательных электрических машин э. п. с.

Предварительная подготовка машин к разборке. После разборки колесно-моториого блока с вала тягового двигателя электровоза спрессовывают шестерни, а с вала тягового двигателя электропоезда - фланец упругой муфты, используя для этого механические, пневматические или масляные съемники.

Рис. 3.1. Подготовка вала двигателя для снятия шестерни

Наименьшую степень возможного повреждения посадочных поверхностей шестерни, полумуфты и вала обеспечивают масляные съемники. Однако их применение требует предварительной специальной подготовки валов (рис. 3.1). На шейке 4 вала посередине, посадочной поверхности делают кольцевую незамкнутую канавку 3, немного не доходящую своими концами до шпоночной канавки 2. Центровое отверстие вала соединяется с канавкой 3 каналом 5. Через центровое отверстие масляным насосом нагнетают масло в канавку 3, плотность посадки шестерни 1 значительно уменьшается, и она легко снимается с вала.

Затем снимают шапки моторно-осевых подшипников, вынимают вкладыши подшипников и подбивку, удаляют смоченной в бензине ветошью остатки масла с внутренних поверхностей гор-

Рис. 3.2. Двухкамерная машина для наружной обмывки и сушки тяговых двигателей перед разборкой ловины и шапок и устанавливают шапки на их прежние места, (но без вкладышей и подбивки).

Снятые с э. п. с. электрические машины и в первую очередь тяговые двигатели обычно сильно загрязнены (при очистке из двигателя удаляют до 15-20 кг различных отходов, в том числе около 10-12 кг консистентной смазки и масла из моторно-якорных и мо-торио-осевых подшипников). Такое загрязнение затрудняет выявление дефектов при осмотре и приводит к снижению качества последующего ремонта.

Очистку тягового двигателя выполняют перед установкой его на первую позицию поточной линии разборки.

Предварительно двигатель очищают снаружи вручную с помощью скребков и ветоши. Для окончательной очистки двигатель обмывают в специальных моечных (одно- или двухкамерных) машинах.

Двухкамерная моечная машина (рис. 3.2) состоит из двух герметически закрывающихся камер. В камере 1 двигатель обмыва"ют горячей (80- 90 °С) водой 9, которую насосом 1 подают во вращающееся, от привода 5 душевое устройство 2. Чтобы внутрь двигателя не попала влага, все вентиляционные и другие отверстия в остове тщательно закрывают специальными заглушками и крышками, а на место крышки верхнего коллекторного люка прикрепляют специальный патрубок 3, через который в двигатель подают от вентилятора 4 воздух, создавая внутри него избыточное давление. После обмывки поднимают промежуточную дверь 8 и перемещают двигатель на самоходной тележке в камеру //, где при закрытой двери 7 в течение 15-20 мин сушат его потоком нагретого от калорифера 6 воздуха.

Частота вращения душевого и сушильного устройств 2 об/мин. Обе камеры могут работать одновременнб.

Очищенную машину устанавливают на позицию 1 поточной линии ремонта (рис. 3.3), где ее тщательно осматривают.

Осмотр по выявлению внешних дефектов осуществляют визуально. Одновременно сверяют номера остова,


Рис. 3.3. Поточная линия ремонта тяговых двигателей:

1 - линия разборки; II- пропиточное отделение; III- линия сборки; IV- линия ремонта якорей; 1, 17- позиции дефектировки; 2- позиция разборки; 3- обдувочная камера; 4- кантователь; 5- позиция ремонта механической части; 6, 23- транспортировочная тележка; 7- сварочный пост; 8- позиция проверки электрической прочности изоляции; 9- позиция сборки; 10- позиция установки щеткодержателей; II- позиция сборки двигателя; 12- стенд испытания двигателя иа холостом ходу; 13- испытательная станция; 14- якорь двигателя; 15- продувочная камера; 16- кантователь; 18- балансировочный станок; 19- станок для пайки петушков коллектора; 20, 22, 26, 28- накопители; 21, 27- позиции соответственно ремонта и проверки электрической части якоря; 24, 25- станки для шлифовки и продорожки коллекторов подшипниковых щитов и шапок моторно-осевых подшипников.

Затем измеряют электрические параметры машины, определяют осевой разбег якоря, биение и износ коллектора, радиальные зазоры якорных подшипников и биение наружных колец.

Для выполнения перечисленных измерений ремонтная позиция 1 оснащена необходимыми измерительными приборами, статическим преобразователем с колонкой выводов и индукционным нагревателем для снятия внутренних колец подшипников и лабиринтных колец.

Сопротивление изоляции тяговых двигателей измеряют мегаомметром на 2,5 кВ. (Для исключения дополнительной погрешности сопротивление изоляции следует измерять мегаомметрами на соответствующее напряжение.)

При измерении сопротивления изоляции соединяют начало (или конец) цепи главных полюсов с началом (или концом) другой цепи - добавочных полюсов и якорной обмотки. К этим выводам подсоединяют зажим «Л» мегаомметра. Второй его зажим «3» соединяют с корпусом машины. В процессе измерения необходимо следить, чтобы выводные концы контролируемых обмоток не касались пола или корпуса двигателя, в противном случае показания прибора будут неправильными. У исправных тяговых двигателей сопротивление изоляции должно быть не менее 5 МОм. Если оно окажется меньше, следует измерить сопротивление отдельных цепей (главных и добавочных полюсов, обмоток якоря) и выявить поврежденное место, имея в виду, что снижение сопротивления могло быть вызвано увлажнением или неисправностью кронштейнов, межкатушечных соединений.

Сопротивление изоляции измеряют до обмывки двигателя.

Сопротивление изоляции вспомогательных машин должно быть не менее 3 МОм. Способы проверки и выявления дефектных мест в изоляции для вспомо-

5 ис. 3.4. Установка индикатора для измерения іиения коллектора

Рис. 3.5. Приспособление для замера биения коллектора
Рис. 3.6. Измерение выработки коллектора шаблоном гательных машин те же, что и для тяговых двигателей.

Активное сопротивление обмоток электрических машин измеряют обычно мостом МДб (или УМ13) и сравнивают с установленным для машины данного типа значением. Увеличение активного сопротивления может быть вызвано дефектами в полюсных катушках, выплавлением кабелей в патронах или наконечниках, обрывом жил выводных кабелей или межкатушечных соединений и нарушением контакта в этих соединениях.

Для выявления причины увеличения сопротивления подозреваемую обмотку машины подключают к статическому преобразователю и устанавливают в ией ток, равный удвоенному значению ее тока часового режима. Дефектное место выявляют на ощупь по повышенному нагреву.

Затем при вращении двигателя под напряжением 220-400 В без нагрузки проверяют работу якорных подшип-« ников, вибрацию двигателя, биений коллектора и работу щеточного аппарата.

Якорные подшипники проверяют по их нагреву и на слух при вращении якоря двигателя с частотой около 700-750 об/мин в течение 5-10 мин в каждую сторону. Исправный подшипник должен работать без треска, щелчков, заеданий и в режиме холостого хода машины не перегреваться относительно температуры окружающей среды более чем на 10 °С.

Вибрацию двигателя проверяют также при его работе на холостом ходу при частоте вращения 700 об/мин. Измеряют вибрацию ручным вибрографом ВР-1. Место приложения вибрографа к корпусу двигателя может быть любым. Если вибрация двигателя окажется более 0,15 мм, якорь необходимо балансировать.

Биение коллектора измеряют индикатором 1 (рис. 3.4), который подводят к коллектору 4 через коллекторный люк и закрепляют струбциной 2 на кромке остова 3. Биение замеряют по средней части рабочей длины коллектора и на расстоянии 10-20 мм от его наружного среза. Если оно превысит предельно допустимое значение, то коллектор подлежит обточке.

Биение коллектора можно измерять и с помощью приспособления (рис. 3.5), корпус 1 которого закрепляют на кронштейне щеткодержателя. Переместив ползунок 2 на рабочую часть коллектора, устанавливают индикатор 3 на нуль и при вращении коллектора определяют биение.

Выработку (износ) рабочей части коллектора можно измерить, также используя это приспособление. Для этого ползунок вначале отводят на нерабочую часть коллектора, устанавливают индикатор на нуль, а затем при неподвижном коллекторе перемещают ползунок по всей рабочей части коллектора и фиксируют по индикатору наибольшее значение выработки.

При отсутствии описанного приспособления выработку можно измерить шаблоном или щупом и линейкой.

Шаблон (рис. 3;6) устанавливают на коллектор 2 и удерживают рукой так, чтобы колодка 1 приспособления располагалась строго параллельно коллекторным пластинам, а ее торец совпадал с концом коллектора. Вращая поочередно головки микрометров 3, определяют выработку в двух точках по длине коллектора.

Для определения выработки щупом и линейкой (рис. 3.7) линейку 2 устанавливают узким ребром на коллекторную пластину 3 и щупом 1 по всей ее длине измеряют зазор между нижней кромкой линейки и рабочей поверхностью пластины. Такие замеры делают в нескольких местах по окружности коллектора.

Коммутацию машины оценивают по степени искрения* под щетками. Если при визуальной оценке искрение под щетками окажется более г/г балла (см. с. 156), а у щеточно-коллекторного узла дефектов выявлено не будет, то необходима тщательная проверка магнитной системы машины, ее отдельных узлов и настройка коммутации.

Радиальные зазоры якорных подшипников проверяют пластинчатыми щупами на неподвижной машине. Для этого снимают наружные крышки и лабиринтные кольца подшипников щитов и проверяют щупом зазор между роликом и внутренним кольцом подшипника в его нижней части. Для тяговых двигателей большинства типов он должен находиться в пределах 0,09-0,22 мм.

Рис. 3.7. Определение выработки коллектора с помощью линейки и щупа

Биение наружных колец подшипников является следствием их перекосов при установке на двигатели. Такие перекосы приводят к значительному повышению напряжений на краю дорожки качения, повышенному износу и повреждениям сепараторов, к радиальному или осевому защемлению роликов, а иногда и к разрушению подшипников.

Выявить перекос колец можно специальным прибором, разработанным ВНИИЖТом. Прибор (рис. 3.8) имеет кольцо 4, которое надевается иа вал двигателя 5 до упора во внутреннее кольцо подшипника и закрепляется на нем тремя центрирующими винтами 6. На кольце закреплена стойка 2 с индикатором 3. Шток индикатора 3 должен упираться своим концом в наружное кольцо подшипника 1.

Для измерения вертикального перекоса прибор закрепляют на валу и уста-

Рис. 3.8. Установка для измерения перекоса якорных подшипников

навливают индикатор в верхнем положении на нуль. Затем поворачивают индикатор относительно вала на 180° и определяют биение торца (с учетом знака отклонения стрелки). Таким же образом определяют биение и в горизонтальной плоскости. Значение биения определяют как максимальную разность в показаниях индикатора. У правильно установленного подшипника биение торца наружного кольца не должно превышать 0,12 мм.

Осевой разбег якоря измеряют индикатором. Для этого якорь сдвигают до упора в одну сторону, а с противоположной стороны закрепляют на специальной стойке индикатор и прижимают его к торцу вала якоря или коробки (на двигателях электровозов ЧС2) так, чтобы стрелка головки стояла на нуле. Затем якорь перемещают до упора в другое крайнее положение. Отклонение стрелки индикатора укажет осевой разбег. У тяговых двигателей с прямо-и косозубой передачами он должен быть соответственно не более 0,2-0,8 и 5,9-8,4 мм, у вспомогательных машин - 0,6-0,15 мм.

Воздушные зазоры между сердечниками полюсов и якорем машины проверяют щупами. Зазоры не должны превышать значения, установленные Правилами ремонта для машин данного типа.

В противном случае нарушится магнитная симметрия машины, изменятся ее характеристики, снизится коммутационная устойчивость. Недопустимые отклонения значений воздушных зазоров при ремонте машины должны быть устранены, а при ее испытании следует провести тщательную отладку коммутации.

Результаты осмотра электрических машин и проведенных измерений вносят в специальный журнал для использования в дальнейшем при определении необходимого объема их ремонта, после чего двигатель передают на позицию его разборки 2 (см. рис. 3.3).

Разборка электрических машин. Электрические машины разбирают на поточно-конвейерных линиях, а при их отсутствии - на специализированных рабочих местах, укомплектованных со ответствующим оборудованием и инструментом.

Тяговые двигатели отечественных электровозов разбирают в вертикальном положении. С помощью тележки подъемно-транспортной установки (или крана) двигатель устанавливают на стенд разборки коллектором вниз.

Выполняя любые операции, связанные с поворотом двигателя из горизонтального положения в вертикальное, следует помнить, что при этом якорный подшипник воспринимает от якоря ударное воздействие, нагружается его полным весом, причем вся эта нагрузка воспринимается в основном буртами колец подшипников и торцами роликов. Особенно большими эти силы могут быть при значительных осевых разбегах якоря в остове. Поэтому всякую операцию по кантованию электрических двигателей для исключения повреждения подшипников следует выполнять без рывков с соблюдением предельной осторожности.

С двигателя снимают крышки коллекторных люков, вентиляционные сетки, отсоединяют от кронштейнов щеткодержателей подводящие кабели, снимают уплотнительные лабиринтные, кольца, крышки подшипниковых щитов и вынимают щетки из щеткодержателей. Лабиринтные кольца снимают в горячем состоянии электромагнитным съемником. После снятия лабиринтных колец крышки подшипниковых щитов устанавливают на свои места. Вывертывают ключом-трещоткой болт фиксатора траверсы щеткодержателей, развертывают фиксатор на 180°, ослабляют на три-четыре оборота затяжку болтов стопорного устройства и через нижний смотровой люк сжимают траверсу, оставляя в месте разреза щель не более 2 мм.

Пневматическим гайковертом отворачивают болты крепления подшипникового щита со стороны, противоположной коллектору, выпрессовывают с помощью гидравлического пресса подшипниковый щит и транспортируют его к прессу для выпрессовки якорных подшипников или устанавливают в специальную транспортировочную кас сету. При выпрессовке щитов нельзя допускать их перекос в горловине остова, так как это может привести к повреждению посадочных поверхностей.

На вал якоря навертывают рым (или ввертывают, если вал имеет под рым внутреннюю резьбу), цепляют за него крюком крана, плавно и строго вертикально, чтобы не повредить коллектор и подшипник, вынимают якорь из остова и транспортируют на накопитель поточной линии ремонта якорей.

Лабиринтные и упорные втулки, а также внутренние кольца якорных подшипников оставляют на валу якоря и спрессовывают с него только при необходимости их ремонта или замены.

Затем остов двигателя кантуют на 180°, выпрессовывают второй подшипниковый щит, снимают щеткодержатели и кронштейны или с помощью специального захвата и крана извлекают из остова траверсу вместе с щеткодержателями.

Для выпрессовки наружных колец якорных подшипников между опорной плитой 1 (рис. 3. 9) и подшипниковым щитом 2 устанавливают стальное кольцо 5, высота которого несколько больше высоты кольца подшипника, а внутренний диаметр на 3-4 мм больше его наружного диаметра. Усилие пресса Р передается на кольцо 4 подшипника через стальной диск 3, обеспечивающий равномерное распределение усилия по окружности кольца подшипника.

Извлечь карданный вал из якоря двигателя АЬ-4846еТ электровоза ЧС2 можно только после освобождения камеры якорной коробки от смазки. Поэтому эти двигатели разбирают в горизонтальном положении. Вначале с них снимают крышки коллекторных люков, вентиляционные сетки, отсоединяют токоведущие провода и вынимают из щеткодержателей щетки. Затем выпрессовывают подшипниковые щиты, снимают траверсу, открывают масляную камеру якорной коробки, сливают из нее масло, извлекают карданный вал с муфтой и только после этого с помощью специального приспособления - монтажной скобы 3 (рис. 3.10)

Рис. З.9.. Выпрессовка подшипникового щита из остова тягового двигателя вынимают якорь 2 из остова 1 тягового двигателя.

Тяговые двигатели электропоездов разбирают также в горизонтальном положении.

Снятые на поточной линии подшипниковые щиты, крышки, уплотнительные кольца, траверсы с щеткодержателями, а также буксы моторно-осевых подшипников транспортируют на специализированные участки, где их ремонтируют. Отремонтированные узлы и детали передают на поточную линию сборки тяговых двигателей, а остов - на следующую позицию линии ремонта остовов для продувки и очистки его внутренней части.

Вспомогательные электрические машины разбирают, как правило, в горизонтальном положении. При большом объеме ремонта его также следует проводить на поточно-конвейерных линиях.

Перед разборкой машины очищают, продувают и осматривают.

Рис. 3.10. Извлечение якоря двигателя АЬ = = 4846еТ из остова с помощью скобы

Учитывая некоторые конструктивные особенности отдельных вспомогательных машин, порядок разборки их может отличаться. Так, мотор-вентиляторы часто выполняют совместно с генераторами управления (например, электродвигатель НБ-430 с генератором управления ДК-405). При их разборке вначале снимают остов генератора. Чтобы снятый остов не упал на якорь генератора, его предварительно подхватывают крюком крана. Аналогично снимают и остов генератора управления, устанавливаемого на расщепителе фаз НБ-453.

Затем с вала якоря свертывают гайку, крепящую втулку якоря генератора, ввертывают во втулку прессовый стакан приспособления для спрессовки якоря и, вращая головку приспособления, спрессовывают якорь с вала электродвигателя. Для удержания снятого якоря его также предварительно вывешивают на крюке крана.

Если генератор управления связан с электродвигателем вентилятора с помощью клиноременной передачи, то при разборке вначале снимают кожух передачи, ремни, а затем отворачивают болты, крепящие приливы генератора к остову электродвигателя, и снимают генератор.

При разборке мотор-компрессора, двигатель которого не имеет второго подшипникового щита, вначале снимают траверсу или щеткодержатели, отсоединяют от корпуса остов электродвигателя и, поддерживая его веревочными стропами, осторожно снимают с якоря. Затем отвертывают гайку, крепящую шестерню к валу якоря, и вынимают якорь.

Последовательность разборки мотор-генераторов также зависит от конструкции их остовов. Если остов разъемный, то вначале снимают верхнюю его половину, затем вынимают якорь с подшипниковыми щитами, снимают траверсы щеткодержателей и сами щеткодержатели. При этом замечают, где и сколько дистанционных колец у него установлено. Эти кольца должны быть установлены при сборке машины после ремонта, чтобы не нару шить проведенную ранее регулироьь подшипников.

С электродвигателей П11, П21 и ДМК спрессовывают шкивы или полу-муфты, снимают крышки коллекторных люков, вынимают щетки, снимают крышки коробок выводов, наружные крышки подшипников и, нанося легкие удары молотком через деревянную прокладку по краям подшипникового щита, вынимают щит из остова. Извлекают якорь, спрессовывают с него подшипники. На переднем подшипниковом щите отвертывают болты, крепящие траверсу, и снимают ее.

У делителя напряжения вначале снимают генератор управления (эту операцию выполняют так же, как и при снятии генератора с вала электродвигателя вентилятора), снимают вентилятор, отсоединяют провода щеткодержателя, ставят делитель напряжения концом вала со стороны генератора вверх, выпрессовывают подшипниковый щит и за рым с помощью крана вытаскивают якорь. Затем устанавливают остов делителя напряжения в горизонтальное положение и выпрессовывают второй подшипниковый щит. Вынутый из остова якорь помещают на стеллаж и винтовой стяжкой спрессовывают с него подшипник.

У трехфазных асинхронных двигателей снимают защитные сетки, вывинчивают маслопроводы, отвертывают болты, крепящие к остову подшипниковый щит со стороны свободного конца вала, и снимают его с помощью отжимных болтов. Аналогично снимают и второй подшипниковый щит.

Для предотвращения возможного повреждения статорной и роторной обмоток при извлечении ротора его приподнимают и подкладывают под него прессшпан толщиной 0,3-0,4 мм. Затем на свободный конец вала ротора надевают рычаг, приподнимают краном или талью так, чтобы он мог свободно перемещаться внутри статора, извлекают ротор из машины и укладывают на деревянные бруски. Аналогично, предварительно сняв реле оборотов, разбирают расщепитель фаз НБ-455А.

У асинхронных электродвигателей АП-81-4 специальным приспособлением снимают рабочее колесо вентилятора, а у электродвигателей АП-81-6 винтовым прессом - полумуфту. Затем снимают крышки подшипников, спрессовывают подшипниковые щиты. Роторы извлекают из статоров вместе с подшипниками. Подшипники спрессовывают и передают в роликовое отделение.

Правила техники безопасности при разборке электрических машин. Большинство операций по разборке связано с использованием кранов, талей и других подъемных средств. Зачаливать электрические машины или их отдельные элементы разрешается только специально обученным лицам, имеющим соответствующее удостоверение. Прежде чем использовать кран или таль, следует убедиться, что рамы, тросы и чалочные приспособления исправны. Перемещенные кранами машины или детали должны быть подняты над полом на установленную высоту, а в подкрановом поле не должны находиться посторонние лица.

Очистка элементов электрических машин. В зависимости от их конструкции и примененных в них материалов ее выполняют различно. Так, остовы и якоря машин вначале очищают от пыли и других загрязнений, обдувая их в продувочной камере сжатым воздухом. Чтобы при этом не повредить изоляцию, наконечник шланга не следует подносить к ней ближе, чем на 150 мм. В ряде депо применяют специальные камеры (рис. 3.11). В них якорь 1 машины размещается на роликовых опорах 2 и при обдувке вращается электроприводом (на рисунке не показан), передающим якорю вращающий момент через обрезиненный прижимной ролик 3. Сжатый воздух подводится по воздухопроводу 4 с форсунками, обеспечивающими направленный обдув якоря. Вся установка закрыта кожухом, который с одной стороны соединен с фундаментом на шарнирах, позволяющих его откидывать. При установке или снятии якоря на опоры его откидывают, поворачивая вокруг оси шарнира 5. Для отсоса пыли камеру соединяют воздухопроводом с вентиляционной системой.

Рис. 3.11. Схема обдувочной камеры для якорей электрических машин

После обдувки якорь и остов подвергают ручной очистке, протирая их техническими салфетками или ветошью, смоченными в бензине (при протирке изоляции) или в керосине (при очистке металлических элементов). Для очистки якорей можно применять и химический способ. Якорь устанавливают в специальной камере, приводят во вращение с частотой около 30 об/мин и подают на него под давлением около 150 кПа (15 кгс/см 2) подогретый до 90 °С обмывочный состав.

Обмытый якорь устанавливают на тележку и подают в сушильную печь (рис. 3.12). Установив тележку 8 с якорем в камеру печи 7, закрывают дверь 9, включают электродвигатель 5 вентилятора. Воздух, поступающий к ротору вентилятора 6 из камеры через воздухопроводы 1, вновь подается в камеру. При этом механическая энергия воздуха, движущегося в достаточно узких нижнем и верхнем воздухопроводах 1 со скоростью до 25/"м/с, превращается в тепловую. Регулируя приводом 4 площадь сечения решетки 3 и поступление воздуха через заборник 2, можно устанавливать в камере любой заданный температурный режим. Обычно сушку ведут не более 15 ч при температуре около 120 °С. Конкретные режимы сушки принимают отдельно для машин различных типов в зависимости от класса примененной в них изоляции.


Рис. 3.12. Схема печи для сушки якорей

Подшипниковые щиты, их крышки, буксы моторно-осевых подшипников и другие части электрических машин, изготовленные из черных металлов и не имеющие элементов из кожи или резины, вываривают в ваннах со щелочным раствором, промывают в теплой воде и просушивают. Моторно-якорные подшипники промывают в специальной моечной машине мыльной эмульсией, нагретой до температуры 90 °С в течение 25-30 мин. Затем эти подшипники протирают техническими салфетками и промывают бензином или уайт-спиритом с добавлением 7% индустриального масла марок 12, 20 или 30.

2.12. Ремонт обмоток электрических машин

Обмотка является одной из наиболее важных частей электрической машины. Надежность машин в основном определяется качеством обмоток, поэтому к ним предъявляются требования электрической и механической прочности, нагревостойкости, влагостойкости и др. Все проводники обмотки должны быть изолированы друг от друга и от корпуса машины. Роль межвитковой изоляции выполняет изоляция самого провода, которая наносится на него в процессе изготовления на заводе. Изоляция, которая отделяет проводники обмотки от корпуса, называется корпусной.
Закрытые пазы (рис. 2.22, а) применяют как в фазных, так и в короткозамкнутых роторах асинхронных двигателей. В современных машинах закрытые пазы имеют прорези для уменьшения пазового рассеяния (эти прорези нельзя использовать для закладывания проводов, поэтому пазы и называются закрытыми). Проводники в такие пазы помещают с торца сердечника.

Рис. 2.22. :
а - закрытый; б - полузакрытый; е - полуоткрытый; г - открытый с бандажом; д - открытый с клином

Полузакрытые пазы (рис. 2.22, б) используют в статорах машин переменного тока мощностью до 100 кВт и напряжением до 660 В, а также в роторах и якорях машин мощностью до 15 кВт. Проводники обмотки круглого сечения опускают в пазы по одному через узкую прорезь.
Полуоткрытые пазы (рис. 2.22, в) применяют в статорах машин переменного тока мощностью 120 - 400 кВт и напряжением не выше 660 В. В них укладывают жесткие катушки по две в каждом слое.
Открытые пазы с креплением обмотки проволочным бандажом (рис. 2.22, г) используют в якорях машин постоянного тока мощностью до 200 кВт.

Открытые пазы с креплением, обмотки клином (рис. 2.22, д) применяются в якорях машин постоянного тока мощностью более 200 кВт, роторах синхронных машин мощностью 15 -100 кВт, статорах асинхронных машин мощностью свыше 400 кВт и крупных синхронных машин.
Корпусная изоляция может быть гильзовой или непрерывной.
При полуоткрытой и открытой формах паза прямолинейную часть проводов или катушек с гильзовой изоляцией обматывают несколькими слоями изоляционного материала, а для скрепления слоев оплетают изоляционными лентами. При полузакрытой форме паза гильзы из нескольких слоев помещают в пазы перед укладкой обмотки. Гильзовая изоляция простая в исполнении и занимает мало места в пазу, но ее можно применять в машинах с рабочим напряжением не выше 660 В. Это объясняется тем, что на стыках между гильзами и ленточной изоляцией лобовых частей катушек может быть пробой изоляции. Поэтому обмотки всех машин напряжением выше 1000 В имеют сплошную изоляцию.
В этом случае катушки или стержни обмоток оплетают изоляционной лентой по всему контуру. Материал ленты подбирают в зависимости от класса нагревостойкости обмотки, количество слоев определяется рабочим напряжением машины.
Существует несколько способов обматывания проводников и катушек обмотки с изоляционной лентой.
Обматывание лентой вразбежку (рис. 2.23, а) - изоляционный слой не образуется, поэтому этот способ применяется только для стягивания витков катушки или удерживания слоев гильзовой изоляции.

Обматывание лентой встык (рис. 2.23, б) - непрерывный слой изоляции не получается, так как в местах стыков могут быть оголенные участки катушки. Такое изолирование применяют только для защиты пазовых частей катушки.

В

Рис. 2.23. : а - вразбежку; б - встык; в - внахлестку

Обматывание лентой внахлестку (рис. 2.23, в) - образуется основная изоляция катушки или стержня. При этом перекрывают предыдущий виток ленты на 1/3, 1/2 или 2/3 ее ширины. Чаще всего применяют перекрытие на 1/2 ширины ленты. При этом действительная толщина изоляции получается вдвое больше расчетной.
Кроме межвитковой и корпусной изоляции катушек в обмотках применяют дополнительные изоляционные прокладки: на дне паза, между слоями обмоток, под проволочными бандажами, между лобовыми частями. Эти прокладки изготавливают из электрокартона, лаковой ткани и изоляционных пленок, а в машинах с нагревостойкой изоляцией из стеклоткани, микафолия, гибкого миканита и т. д.
Нагревостойкость изоляции является одним из важнейших ее свойств. В зависимости от этого параметра изоляционные материалы разделяют на семь классов: Y (90 °С), А (105 °С), Е (120 °С), В (130 °С), F (155 °С), Н (180 °С), С (более 180 °С).

Диэлектрические свойства изоляции характеризуются ее электрической прочностью и величиной электрических потерь. Высокой электрической прочностью обладают материалы на основе слюды. Например, электрическая прочность микаленты в зависимости от марки и толщины составляет 16 - 20 кВ/мм, непропитанной хлопчатобумажной ленты - только 6, а стеклоленты - 4 кВ/мм.
Электрическая прочность изоляционных материалов может значительно снизиться в результате деформаций при изготовлении обмоток. После пропитки соответствующими растворами электрическая и механическая прочность некоторых изоляционных материалов повышается.
Для обмоток электрических машин применяют провода с волокнистой, эмалевой и комбинированной изоляцией и голые провода круглого, прямоугольного и фасонного сечений.
Провода с эмалевой изоляцией круглого и прямоугольного сечения все в большей степени используются вместо проводов с волокнистой изоляцией, так как эмалевая изоляция более тонкая, чем волокнистая.
Обмотка электрической машины состоит из витков, катушек и катушечных групп.
Виток - два последовательно соединенных между собой проводника, размещенных под соседними разноименными полюсами. Виток может состоять из нескольких параллельных проводников. Число витков зависит от номинального напряжения машины, а площадь сечения проводников - от ее тока.
Катушка - несколько витков, уложенных соответствующими сторонами в два паза и соединенных между собой последовательно. Части катушки, которые лежат в пазах сердечников, называют пазовыми или активными, а размещенные за пазами - лобовыми.
Шаг катушки - число пазовых делений, заключенных между центрами пазов, в которые укладываются стороны витка или катушки. Шаг катушки может быть диаметральным или укороченным. Диаметральным называют шаг, равный полюсному делению, а укороченным - несколько меньший диаметрального.
Катушечная группа представляет собой несколько последовательно соединенных катушек одной фазы, стороны которых лежат под двумя соседними полюсами.
Обмотка - несколько катушечных групп, уложенных в пазы и соединенных по определенной схеме.
Обмотки электрических машин разделяют на петлевые, волновые и комбинированные. По способу заполнения паза они могут быть однослойными и двухслойными. При однослойной обмотке сторона катушки занимает весь паз по его высоте, а при двухслойной - только половину, вторую его половину заполняет соответствующая сторона другой катушки.
Основным типом статорной обмотки асинхронных машин является двухслойная обмотка с укороченным шагом. Однослойные обмотки применяются только в электродвигателях малых габаритов.
На рис. 2.24 показаны развернутая и фронтальная (торцевая) схемы двухслойной трехфазной обмотки. Стороны катушек в пазовой части обозначают двумя линиями - сплошной и штриховой. Сплошной линией изображают сторону катушки, которая уложена в верхнюю часть паза, а штриховой - нижнюю сторону катушки, уложенной на дно паза. В разрывах вертикальных линий указывают номера пазов сердечника. Нижний и верхний слои лобовых частей изображают соответственно штриховыми и сплошными линиями.
Начала первой, второй и третьей фаз обозначают CI, С2, СЗ (по старому, но широко используемому ГОСТу) или Ul, VI, W1 (по новому ГОСТу), а концы этих фаз - соответственно С4, С5, С6 или U2, V2, W2. На схеме указывается вид обмотки, а также даются ее параметры: z - число пазов; 2р - число полюсов; у - шаг обмотки по пазам; а - число пар параллельных ветвей в фазе; т - число фаз; способ соединения фаз - Y - звездой, Л - треугольником.
Обмотки статоров выполняют однослойными и двухслойными. Намотку однослойных обмоток осуществляют механизированным способом на специальных станках.
Однослойные обмотки имеют разную форму, а лобовые части одной катушечной группы - одинаковую форму, но разные размеры (рис. 2.25). Чтобы уложить обмотку в пазы сердечника статора, лобовые части катушек располагают по окружности в два или три ряда. Наиболее распространены однослойные двух- и трехплоскостные обмотки (лобовые части обмотки располагаются на двух или трех уровнях.

Роторы асинхронных двигателей выполняют с короткозамкнутой или фазной обмоткой. Короткозамкнутые обмотки электрических машин старых конструкций изготовлялись в виде "беличьей клетки" из медных стержней, концы которых были запаяны в отверстиях, высверленных в медных короткозамкнутых кольцах (см. рис. 2.3). В современных асинхронных электрических машинах мощностью до 100 кВт короткозамкнутую обмотку ротора образуют заливкой его пазов расплавленным алюминием.





С1 С6 С2 С4 СЗ С5
Рис. 2.25. (г = 24; р = 2): а - с четным числом пар полюсов; б - расположение лобовых частей; в - с нечетным числом пар полюсов; г - расположение лобовых частей

В фазных роторах асинхронных двигателей чаще всего применяют волновые или петлевые обмотки. Наиболее распространены волновые обмотки, преимущество которых заключается в минимальном числе межгрупповых соединений. Основным элементом волновой обмотки является обычный стержень. Двухслойную волновую обмотку выполняют, вставляя с торца ротора в каждый его закрытый или полузакрытый паз по два стержня. Схема волновой обмотки четырехполюсного ротора, который имеет 24 паза, показана на рис. 2.26, а. Шаг волновой обмотки равен числу пазов, разделенных на число полюсов. Для схемы, изображенной рис. 2.26, а, он будет равен 6. Это означает, что верхний стержень паза 1 подходит к нижнему стержню паза 7, который при шаге обмотки, равном 6, соединяется с верхним стержнем паза 13 и нижним стержнем паза 19. Для продолжения обмотки шагом, равным 6, необходимо соединить нижний стержень паза 19 с верхним стержнем паза 1, а значит, замкнуть обмотку, что недопустимо. Чтобы избежать этого, укорачивают или удлиняют шаг обмотки на один паз. Волновые обмотки с укороченным шагом на один паз называют обмотками с укороченными переходами, а с увеличенным шагом на один паз - обмотками с удлиненными переходами.
На схеме обмотки число пазов на полюс и фазу равно двум, поэтому необходимо сделать два обхода ротора, а для образования четырехполюсной обмотки не хватает соединений с противоположной стороны ротора, которые можно получить при его обходе, но уже в обратном направлении.
В волновых обмотках различают передний шаг обмотки со стороны выводов (контактных колец) и задний шаг обмотки со стороны, противоположной контактным кольцам. Обход ротора в обратном направлении, в данном случае переход на задний шаг, достигается соединением нижнего стержня паза 18 с нижним стержнем, который отстает от него на один шаг. Далее делается два обхода ротора. Продолжая обход ротора задним шагом, нижний стержень паза 12 соединяют с верхним стержнем паза 6. Дальнейшие соединения делают так. Нижний стержень паза 1 соединяют с верхним стержнем паза 19, который (как видно из схемы) соединяется с нижним стержнем паза 13, а тот в свою очередь с верхним стержнем паза 7. Второй конец верхнего стержня этого паза идет на вывод, образуя конец первой фазы.
Обмотки фазных роторов асинхронных двигателей соединяют преимущественно "звездой" с выводом трех концов обмотки к контактным кольцам. Выводы обмотки ротора обозначают PI, Р2, РЗ (по старому ГОСТу) или Kl, LI, Ml (по новому ГОСТу), а концы фаз обмотки соответственно Р4, Р5, Р6 или К2, L2, М2.

Перемычки, которые соединяют начала и концы фаз обмотки ротора, указывают римскими цифрами, например, в первой фазе перемычка, которая соединяет начало Р1 и конец Р4, обозначена I-IV, Р2 и Р5 - II-V, РЗ и Р6 - III-VI.


Для якорей машин постоянного тока применяют петлевые и волновые обмотки. Простая волновая обмотка якоря (рис. 2.26, б) получается соединением выводных концов секции с двумя коллекторными пластинами АС и BD, расстояние между которыми определяется двойным полюсным делением (2т). При выполнении обмотки конец последней секции первого обхода соединяют с началом секции, соседней с той, от которой был начат обход, и далее продолжают обходы по якорю и коллектору, пока не будут заполнены все пазы и не замкнется обмотка.
Подготовка обмоток к ремонту. Ремонт обмоток выполняется специально обученными рабочими на обмоточных участках ремонтного подразделения или предприятия. Подготовка машин к ремонту заключается в подборе обмоточных проводов, изоляционных, пропиточных и вспомогательных материалов. Перечень материалов, необходимых для ремонта обмоток, заносят в эксплуатационную документацию электрической машины.
Для выявления замыканий в обмотке между витками одной катушки или проводами разных фаз используют специальные приборы. Определив характер неисправности обмотки, начинают ее ремонт.
Технология капитального ремонта обмоток электрических машин включает следующие основные операции:
разборка обмотки;
очистка пазов сердечника от старой изоляции;
ремонт сердечника и механической части машины;
очистка катушек обмотки от старой изоляции;
подготовительные операции для изготовления обмотки;
изготовление катушек обмотки;
изолирование сердечника и обмоткодержателей;
укладывание обмотки в паз;
пайка соединений обмотки;
крепление обмотки в пазах;
сушка и пропитка обмотки.
Ремонт обмоток статоров. Изготовление обмотки статора начинают с намотки отдельных катушек на шаблоне. Чтобы правильно выбрать размер шаблона, необходимо знать основные размеры катушек, главным образом их прямолинейной и лобовой частей. Размеры катушек обмотки демонтируемых машин определяют путем замеров старой обмотки.
Катушки всыпных обмоток статоров изготавливают обычно на универсальных шаблонах (рис. 2.27). Такой шаблон представляет собой стальную плиту 1, которая при помощи приваренной к ней втулки 2 соединяется со шпинделем намоточного станка. Плита имеет форму трапеции. В ее прорези установлены четыре шпильки, закрепленные гайками. При намотке катушек разной длины шпильки перемещают в прорезях. При намотке катушек разной ширины шпильки переставляют с одних прорезей в другие.
В обмотках статора машин переменного тока обычно несколько соседних катушек соединяют последовательно, и они образуют катушечную группу. Чтобы избежать лишних паечных соединений, все катушки одной катушечной группы наматывают цельным проводом. Поэтому на шпильки 3 надевают ролики 4, выточенные из текстолита или алюминия. Число желобков на ролике равно наибольшему числу катушек в катушечной группе, размеры желобков должны быть такими, чтобы в них могли поместиться все проводники катушки.


Рис. 2.27.: 1 - плита; 2 - втулка; 3 - шпилька; 4 - ролики

Иногда при ремонте обмоток двигателей приходится заменять отсутствующие провода проводами других марок и сечений. По тем же причинам вместо намотки катушки одним проводом используют намотку двумя (и более) параллельными проводами, суммарное сечение которых эквивалентно требуемому. При замене проводов ремонтируемых двигателей предварительно (до намотки катушек) проверяют коэффициент заполнения паза, который должен быть 0,7 - 0,75.
Катушки двухслойной обмотки укладывают в пазы сердечника группами, как они были намотаны на шаблоне. Провода распределяют в один слой и кладут стороны катушек, которые прилегают к пазу. Другие стороны катушек не укладывают в пазы до тех пор, пока не будут уложены нижние стороны катушек во все пазы (рис. 2.28). Следующие катушки кладут одновременно верхними и нижними сторонами. Между верхними и нижними сторонами катушек в пазах устанавливают изоляционные прокладки из электрокартона, согнутого в виде скобочки, а между лобовыми частями - из лакоткани или листов картона с наклеенными на них кусочками лакоткани.
При ремонте электрических машин старых конструкций с закрытыми пазами рекомендуется до начала демонтажа обмотки снять ее реальные обмоточные данные (диаметр провода, количество проводов в пазе, шаг обмотки по пазам и др.), а затем сделать эскизы лобовых частей и отмаркировать пазы статора (эти данные могут понадобиться при восстановлении обмотки).

Рис. 2.28.

Рис. 2.29. : 1 - стальной дорн; 2 - гильза

Изготовление обмотки с закрытыми пазами имеет ряд особенностей. Пазовую изоляцию таких обмоток делают в виде гильз из электрокартона и лакоткани. Предварительно по размерам пазов машины изготовляют стальной дорн 1, который представляет собой два встречных клина (рис. 2.29). Дорн должен быть меньше паза на толщину гильзы 2. Затем по размерам старой гильзы нарезают заготовки из электрокартона и лакоткани на полный комплект гильз и приступают к их изготовлению. Нагревают дорн до 80 - 100 °С и плотно обертывают заготовкой, пропитанной лаком. Сверху на заготовку вполнахлестку плотно укладывают хлопчатобумажную ленту. После охлаждения дорна до температуры окружающей среды разводят клинья и снимают готовую гильзу. Перед намоткой помещают гильзы в пазы статора, а затем заполняют их стальными прутками, диаметр которых должен быть на 0,05 - 0,1 мм больше диаметра изолированного обмоточного провода. От бухты отрезают кусок провода, необходимый для намотки одной катушки. Длинный провод усложняет намотку, при этом нередко повреждается изоляция из-за частой протяжки его через паз.
Намотку в протяжку обычно производят два обмотчика, которые стоят с двух сторон статора (рис. 2.30). Изоляцию лобовых частей
обмотки машин на напряжение до 660 В, предназначенных для работы в нормальной среде, выполняют стеклолентой ЛЭС, причем каждый следующий слой полуперекрывает предыдущий. Каждую катушку группы обматывают, начиная от торца сердечника. Сначала обматывают лентой часть изоляционной гильзы, которая выступает из паза, а затем часть катушки до конца выгиба. Середины головок группы обматывают стеклолентой вполнахлестку. Конец ленты закрепляют на головке клеем или плотно пришивают к ней. Провода обмотки, которые лежат в пазе, удерживают с помощью пазовых клиньев, изготавливаемых из бука, березы, пластмассы, текстолита или гетинакса. Клин должен быть на 10 - 15 мм длиннее сердечника и на 2 – 3 мм короче пазовой изоляции и толщиной не менее 2 мм. Для влагоустойчивости деревянные клинья "варят" 3 - 4ч в олифе при 120 - 140°С.


Рис. 2.30. Намотка впротяжку статорной обмотки электрической машины с закрытыми пазами

Клинья забивают в пазы средних и малых машин молотком и с помощью деревянной надставки, а в пазы крупных машин - пневматическим молотком (рис. 2.31). Затем собирают схему обмотки. Если фаза обмотки намотана отдельными катушками, их последовательно соединяют в катушечные группы.

Рис. 2.31. : 1 - клин; 2 - пазовая изоляция; 3 - надставка
За начало фаз принимают выводы катушечных групп, которые выходят из пазов, расположенных около выводного щитка. Эти выводы отгибают к корпусу статора и предварительно соединяют катушечные группы каждой фазы, скручивают зачищенные от изоляции концы проводов катушечных групп.
После сборки схемы обмотки проверяют электрическую прочность изоляции между фазами и на корпус, а также правильность ее соединения. Для этого используют самый простой способ - кратковременно подключают статор к сети (127 или 220В), а затем к поверхности его расточки прикладывают стальной шарик (от шарикоподшипника) и отпускают его. Если шарик вращается по окружности расточки, значит схема собрана правильно. Такую проверку можно также осуществить с помощью вертушки. В центре диска из жести пробивают отверстие, укрепляют его гвоздем на торце деревянной планки, а затем эту вертушку помещают в расточку статора, который подключен к электрической сети. Если схема собрана правильно, диск будет вращаться.
Правильность сборки схемы и отсутствие витковых замыканий в обмотках ремонтируемых машин проверяют также электронным аппаратом Ел-1. Две одинаковые обмотки или секции соединяют с аппаратом, а затем с помощью синхронного переключателя подают периодически импульсы напряжения на электронно-лучевую трубку аппарата. Если в обмотках нет повреждений, кривые напряжений на экране накладываются одна на другую, при наличии же дефектов они раздваиваются. Для обнаружения пазов, в которых находятся короткозамкнутые витки, используют приспособление с двумя П-образными электромагнитами на 100 и 2000 витков. Катушку неподвижного электромагнита (100 витков) соединяют с выводами аппарата, а катушку подвижного электромагнита (2000 витков) - с выводами "Сигн. явл.". При этом средняя ручка должна быть поставлена в крайнее левое положение "Работа с приспособлением". Если переставить оба электромагнита приспособления с паза на паз по расточке статора, на экране появится прямая или кривая линия с малыми амплитудами, которая свидетельствует об отсутствии в пазе короткозамкнутых витков. В противном случае на экране будут кривые линии с большими амплитудами.
Аналогично находят короткозамкнутые витки в обмотке фазного ротора или якоря машин постоянного тока.
Ремонт обмоток роторов. В асинхронных двигателях с фазным ротором используют два основных типа обмоток: катушечную и стержневую. Изготовление всыпных и протяжных катушечных обмоток роторов почти не отличается от изготовления таких же обмоток статоров.
В машинах мощностью до 100 кВт применяют преимущественно стержневые двухслойные волновые обмотки роторов. В них повреждаются не сами стержни, а их изоляция (в результате частых чрезмерных нагревов), а также пазовая изоляция роторов.
Обычно медные стержни поврежденной обмотки используют повторно, поэтому после восстановления изоляции их кладут в те же пазы, в которых они находились до ремонта.
Сборка стержневой обмотки ротора состоит из трех основных операций: укладка стержней в пазы сердечника ротора, изгибание лобовых частей стержней и соединение стержней верхнего и нижнего рядов пайкой или сваркой. Изолированные стержни, которые используются повторно, поступают на укладку в пазы только с одной согнутой лобовой частью. Другие концы этих стержней изгибают специальными ключами после укладки в пазы. Сначала кладут в пазы стержни нижнего ряда, вставляя их со стороны, противоположной контактным кольцам. Уложив весь нижний ряд стержней, их прямые участки помещают на дно пазов, а согнутые лобовые части - на изолированный обмоткодержатель. Концы согнутых лобовых частей сильно стягивают временным бандажом из мягкой стальной проволоки, плотно прижимая их к обмоткодержателю. Второй временный бандаж из проволоки наматывают на середины лобовых частей. Временные бандажи служат для предотвращения сдвига стержней при дальнейшем их изгибании.

Стержни изгибают с помощью двух специальных ключей (рис. 2.32).
После укладки стержней нижнего ряда переходят к укладке стержней верхнего ряда обмотки, вставляя их в пазы со стороны, противоположной от контактных колец. Потом кладут временные бандажи. Концы стержней соединяют медной проволокой для проверки отсутствия замыкания на корпус. Если результаты испытаний положительные, продолжают сборку обмотки, концы верхних стержней изгибают в противоположную сторону. Согнутые лобовые части верхних стержней также крепят двумя временными бандажами.

Рис. 2.32. :
о - пластинка; б - "язык"; в - обратный клин; г - угловой нож; д - выколотка; е - топорик; ок, а - ключи для гнутья стержней ротора
После укладки стержней верхнего и нижнего рядов обмотку ротора сушат при 80 - 100° С в печи или сушильном шкафу. Затем испытывают изоляцию высушенной обмотки.
Конечными операциями изготовления стержневой обмотки ротора ремонтируемой машины является соединение стержней, забивание клиньев в пазы и бандажирование обмотки. Для повышения надежности машин применяют соединение стержней пайкой твердыми припоями.
Обмотки фазных роторов асинхронных двигателей соединяют преимущественно "звездой".

Большинство асинхронных двигателей мощностью до 100 кВт изготавливается с короткозамкнутым ротором, который выполняют из алюминия методом литья.
Ремонт литого ротора с поврежденным стержнем состоит из перезаливки его после выплавки алюминия и очистки пазов. Для этой цели используют кокили.
На крупных электроремонтных заводах короткозамкнутые роторы заливают алюминием центробежным или вибрационным способом, а также используют литье под давлением.
Ремонт обмоток якорей. Основные неисправности обмоток якорей: соединение обмотки с корпусом, межвитковые замыкания, обрывы в обмотках, механические повреждения паек.
При подготовке якоря к ремонту снимают старые бандажи, отпаивают соединения с коллектором, удаляют старую обмотку, предварительно записав все необходимые для ремонта данные.
В машинах постоянного тока применяют стержневые и шаблонные обмотки якорей. Стержневые обмотки якорей выполняют так же, как и стержневые обмотки роторов.
Для намотки секций шаблонной обмотки используют изолированные провода, а также медные шины, которые изолируют лакотканью или миколентой. Секции шаблонной обмотки наматывают на универсальных шаблонах, которые позволяют делать обмотку, а затем растяжку небольшой секции, не снимая ее с шаблона. Растяжку секций якорей крупных машин выполняют на специальных станках с машинным приводом. Перед растяжкой секцию закрепляют, временно обматывая ее хлопчатобумажной лентой в один слой, чтобы обеспечить правильное формирование секции при растяжении.
Катушки шаблонных обмоток изолируют вручную или на специальных станках. При укладке шаблонной обмотки в паз следят, чтобы концы катушки, которые повернуты к коллектору, а также расстояния от края сердечника до перехода прямой (пазовой) части в лобовую были одинаковые. После укладки всей обмотки провода обмотки якоря подсоединяют к пластинам коллектора пайкой с использованием припоя ПОСЗО.
Качество пайки проверяют внешним осмотром, измерением переходного сопротивления между соседними пластинами, пропусканием рабочего тока по обмотке якоря. При качественной пайке переходное сопротивление между всеми парами пластин должно быть одинаковым. При пропускании по обмотке якоря в течение 20 - 30 мин номинального тока не должно возникать местных нагревов.

Ремонт катушек полюсов.

Чаще всего поврежденными оказываются катушки добавочных полюсов, которые намотаны прямоугольной медной шиной плазом или на ребро. Обычно повреждается изоляция между витками катушки. При ремонте катушку перематывают на намоточном станке (рис. 2.33, а), а затем изолируют на изолировочном станке (рис. 2.33, б). Изолированную катушку стягивают хлопчатобумажной лентой и прессуют. Для этого надевают на оправку торцевую изоляционную шайбу, кладут на нее катушку и накрывают второй шайбой. Затем сжимают катушку на оправке, присоединяют к сварочному трансформатору, нагревают до 120 °С и, сжимая ее, снова прессуют, после чего охлаждают в запрессованном положении на оправке до 25 °С. Снятую с оправки охлажденную катушку покрывают лаком воздушной сушки и выдерживают в течение 10 - 12 ч при 20 - 25 °С.


Рис. 2.33. :
а - для намотки катушек из полосовой меди; б - для изолировки намотанной катушки; 1, 4 - миканитовая и хлопчатобумажная ленты; 2 - шаблон; 3 - медная шина;
5 - полюсная катушка
Наружную поверхность катушки изолируют асбестовой, а затем миканитовой лентой и покрывают лаком. Готовую катушку надевают на добавочный полюс и крепят деревянными клиньями.
Сушка и пропитка обмоток. Некоторые изоляционные материалы (электрокартон, хлопчатобумажные ленты) являются гигроскопическими. Поэтому перед пропиткой обмотки статоров, роторов и якорей сушат в специальных печах при 105 - 200° С. Можно также использовать инфракрасные лучи, источником которых являются специальные лампы накаливания.
Высушенные обмотки пропитывают лаком в специальных ваннах с подогревом, которые устанавливают в отдельном помещении, оборудованном приточно-вытяжной вентиляцией и необходимыми средствами пожаротушения.
Для обмоток применяют пропиточные лаки воздушной или печной сушки, а в отдельных случаях - кремнийорганические лаки. Пропиточные лаки должны обладать малой вязкостью и большой проникающей способностью и в течение длительного времени сохранять изоляционные свойства.
Обмотки электрических машин пропитывают один, два или три раза в зависимости от условий эксплуатации и предъявляемых к ним требований. В процессе пропитки необходимо постоянно проверять вязкость и густоту лака, так как растворители испаряются и лак загустевает. При этом значительно снижается его способность проникать в изоляцию проводов обмотки, расположенных в пазах сердечника статора или ротора. Поэтому в пропиточную ванну периодически добавляют растворитель.
Обмотки электрических машин после пропитки сушат в специальных камерах с естественной или принудительной вентиляцией тепловым воздухом. Подогрев может быть электрическим, газовым, паровым. Наиболее распространены сушильные камеры с электрическим подогревом.
В начале сушки (1 - 2 ч), когда удерживаемая в обмотках влага быстро испаряется, отработанный воздух полностью выпускается в атмосферу. В последующие часы сушки часть отработанного теплого воздуха, содержащего небольшое количество влаги и паров растворителя, возвращается в камеру. Максимальная температура в камере не превышает 200° С.
Во время сушки обмоток постоянно контролируют температуру в камере и выходящего из нее воздуха. Обмотки располагают так, чтобы они лучше обдувались горячим воздухом. Процесс сушки состоит из разогрева обмоток (для выведения растворителя) и запекания лаковой пленки.
При подогреве обмоток повышать температуру выше 100 - 110°С нежелательно, так как преждевременно может образоваться лаковая пленка.
В процессе запекания лаковой пленки кратковременно (не более чем на 5 - 6 ч) можно повышать температуру сушки обмоток с изоляцией класса А до 130 - 140 °С.
На крупных электроремонтных предприятиях пропитку и сушку выполняют на специальных пропиточно-сушильных конвейерных установках.
После ремонта электрические машины поступают на испытания.

1. Какие способы обмотки катушек лентами используют при их изолировании?
2. Как разделяются изоляционные материалы по классам нагревостойкости?
3. Что такое виток, катушка, катушечная группа и обмотка?
4. Какие типы обмоток применяются в статорах асинхронных двигателей?
5. Какие пазы используются в электрических машинах?
6. Как устроен универсальный обмоточный шаблон?
7. Как укладывают в пазы шаблонную обмотку?
8. Как изготовляют стержневую обмотку?
9. Какие приспособления применяют при выполнении катушек якоря?
10. Как изолируют лобовые части обмоток?
11. Какие неисправности бывают в полюсных катушках?
12. Почему сушат обмотки?
13. Процесс пропитки обмотки.

ПАЙКА, ИЗОЛИРОВКА И УВЯЗКА СХЕМЫ ОБМОТКИ ЭЛЕКТРОДВИГАТЕЛЯ.


При изготовлении обмотки электродвигателя токоведущие части соединяют при помощи пайки или сварки.
Пайка - это процесс соединения металлов при помощи легкоплавкого металла или сплава, называемого припоем.
Для пайки соединяемые поверхности деталей очищают от окислов, жировых и других загрязнений и нагревают до определенной температуры, при этом указанные поверхности остаются в твердом состоянии.
Между спаиваемыми поверхностями вводится расплавленный припой, который, смачивая их, прочно скрепляет соединяемые части после затвердевания и охлаждения.
Сваркой называется способ соединения металлов за счет местного расплавления соединяемых частей.
Расплавление металла производится за счет тепла электрической дуги (электросварка) или тепла, образующегося при горении газа (газовая сварка).
Соединения, получаемые методом сварки, неразъемные. Спаянные детали можно разъединить на составные части, если нагреть место спайки до температуры плавления припоя.
Процесс пайки - это наиболее распространенный способ соединения деталей в электромашиностроении.

После укладки всех сторон катушек в пазы сердечников необходимо произвести соединение концов отдельных катушечных групп в фазы согласно схемы, указанной в чертеже. Для этого выводные концы отдельных катушек расправляют и подравнивают по длине, размечают согласно схеме, а затем конец одной катушки скручивают с началом другой.
К началу и концам фаз согласно схеме присоединяют выводные кабели, после чего производят пайку или сварку скруток:

Концы катушек, подлежащие сварке, скручивают между собой. К ним подводят один из концов сварочного однофазного трансформатора, второй конец трансформатора соединяют с угольным электродом. При касании электродом торцов свариваемых проводов возникает электрическая дуга, которая оплавляет концы проводов, соединяя их в единое целое.
Для защиты глаз от вредного воздействия на них дуги сварку необходимо производить в защитных сварочных очках.
При сварке возникновение электрической дуги и оплавление концов проводов происходят за доли секунды. Любая передержка дуги может привести к пережогу металла. Соединение становится хрупким и при изгибе проводов в процессе сборки схемы рядом с местом сварки провода могут обломиться. Вот почему некоторые заводы предпочитают не сваривать, а паять межкатушечные соединения припоем ПМФ.

Соединения концов катушечных групп между собой и с выводными кабелями изолируют двумя слоями стеклолакоткани, собирают по торцу схемы в один жгут, который после бандажировки стеклолентой привязывают к лобовым частям обмотки.

Выводные кабели без перекрещивания выводят наружу (при укладке обмотки в пакет, находящийся в статоре) или располагают по торцу схемы (при укладке обмотки в отдельный пакет).
Для удержания на роторе в процессе вращения лобовых частей всыпных обмоток их привязывают стеклолентой к специальным металлическим кольцам, сидящим на валу ротора.